期刊文献+

基于低通等效的非正弦时域正交调制系统研究 被引量:2

Research on non-sinusoidal orthogonal modulation in time domain based on low-pass equivalent
下载PDF
导出
摘要 针对基于椭圆球面波函数(Prolate Spheroidal Wave Function,PSWF)的非正弦时域正交调制系统在应用中遇到的带通PSWF信号实时产生困难、系统对同步误差敏感及实现复杂度高的问题,从带通信号低通等效的基本原理出发,分析了带通PSWF脉冲信号的低通等效形式,论证了正交带通PSWF脉冲信号的低通等效正交条件,提出了基于低通等效的相关接收方法,并对其性能和抗同步误差能力进行了分析.理论分析和仿真结果表明,非理想同步条件下,基于低通等效的解调方法具有更好的对抗同步误差的能力,对比于优化的解调方法,系统性能仍有至少2dB的提高,这种方法还可降低系统的实现复杂度. It is difficult to generate a bandpass prolate spheroidal wave function(PSWF)pulse signal in real-time,and the non-sinusoidal orthogonal modulation in time domain based on PSWF is sensitive to the synchronization timing error and hard to realize.For these issues,from the low-pass equivalent principle of bandpass signal,the low-pass equivalent form of the bandpass PSWF pulse signal is analyzed,and the equivalent orthogonal condition of the complex envelopes of two bandpass PSWF signals isderived,then,a demodulate method based on low-pass equivalent principle is proposed.The bit error rate(BER)performance is analyzed when the system is ideal or non-ideal synchronized.The mathematical deduction and simulation results both show that the demodulate method proposed is better when system is unideally synchronized.Compared with other demodulate methods,the method proposed at least improved the BER performance by 2dB,and the complexity of the system can be greatly reduced.
出处 《电波科学学报》 EI CSCD 北大核心 2015年第1期84-90,共7页 Chinese Journal of Radio Science
基金 国家自然科学基金项目(No.61179018) 山东省"泰山学者"建设工程专项经费项目(No.ts20081130)
关键词 椭圆球面波函数 非正弦时域正交调制 低通等效 同步误差 prolate spheroidal wave functions(PSWF) nonsinusoidal orthogonal modulation in time domain lowpass equivalent synchronization timing error
  • 相关文献

参考文献10

二级参考文献46

  • 1王红星,赵志勇,刘锡国等.非正弦时域正交调制方法[P].中国专利,公开号:CN101409697A,2009.
  • 2SLEPIAN D, POLLAK H O. Prolate spheroidal wave functions, Fourier analysis, and uncertainty-1 [R]. Bell Syst. Tech. J. , 1961, 40(1): 43-46.
  • 3MOORE I C, CADA M. Prolate spheroidal wave func- tions, an introduction to the Slepian series and its prop- erties [J]. Appl. Comput. Harmon. Anal. 2004(16): 208-230.
  • 4LE C T, MERTINS A. Space-Time-Frequency Code implementation in MB-OFDM UWB communications: Design criteria and performance[J]. Wireless Commu- nications, IEEE Transactions on, 2009, 8 (2): 701- 713.
  • 5PARR B, CHO B, WALLACE K. A novel Ultra- wideband pulse design algorithm [J]. IEEE Commu- nication Letters, 2003, 7 (5): 219-221.
  • 6XIAO H, ROKHLIN V, YARVIN N. Prolate sphe- roidal wave functions, quadrature and interpolation [J]. Inverse Problems. 2001(17):805-838.
  • 7DILMAGHANI R S , GHAVAMI M , ALLEN B, et al. Novel UWB pulse shaping using prolate spheroidal wave functions [C]// 14th IEEE International Sympo- sium on Personal, Indoor& Mobile Radio Communica- tion Proceedings, 2003 : 602-606.
  • 8KHARE K, GEORGE N. Sampling theory approach to prolate spheroidal wave functions [J]. Journal of Physics A: Mathematical and General. 2003 (36):10011-10021.
  • 9KHARE K. Bandpass sampling and bandpass ana- logues of prolate spheroidal functions [J]. Signal Pro- cessing, 2006(86): 1550-1558.
  • 10LIN P, LIU D, PHOONG M. A New Iterative Al- gorithm for Finding the Minimum Sampling Frequen- cy of MultiBand Signals[J]. Signal Processing,IEEE Transactions on,2010(99) : 1-1.

共引文献33

同被引文献29

  • 1SLEPIAN D, POLLAK H O. Prolate spheroidal wave functions, fourier analysis, and uncertainty-IV[J]. The Bell System Technical Journal, 1978,57( 5 ) : 1371-1430.
  • 2PARR B, CHO B, WALLACE K. A novel ultra-wideband pulse design algorithm[J]. IEEE Communication Letters, 2003,7( 5 ):219-221.
  • 3DILMAGHANI REZA S, GHAVAMI M, ALLEN B, et al. Novel UWB pulse shaping using prolate spheroidal wave functions[C]//14'" IEEE International Symposium on Personal, Indoor Radio Communication Proceedings. 1EEE,2003 : 602-606.
  • 4PEI SOUCHANG, DING JIANJUN. Generalized prolate spheroidal wave functions for optical finite tractional fou- rier and linear canonical transfonns[J]. Journal of the Op- tical Society of America, 2005.22 ( 3 ) : 460-474.
  • 5IAN C M, MICHAEL C. Prolate spheroidal wave func- tions, and introduction to the slepian series and its proper- ties[J]. Applied Computational Harmonic Analysis, 2004 (16) :208-230.
  • 6王红星,赵志勇,刘锡同.等.非正弦时域正交涮制方法:中国,ZL200810159238-3[P].2009.04-15.
  • 7PARR B, CHO B, WALLACE K. A novel ultra-wideband pulse design algorithm[J]. IEEE Communication Letters, 2003,7(5) :219-221.
  • 8JOHNGR数字通信[M].张力军,译.北京:电子工业出版社,2003:108-111.
  • 9SLEPIAN D,POLLAK H O. Prolate spheroidal wave functions, fourier analysis, and uncertainty-I[J]. The bell system technical journal, 1961 .. 43-46.
  • 10LANDAU H J, POLLAK H O. Prolate spheroidal wave functions, Fourier analysis, and uncertainty-IIh the dimension of the space of essentially time-and band-limited signals [J]. The Bell system technical journal, 1962: 1295-1336.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部