期刊文献+

基于Block-Gibbs抽样的无限潜Dirichlet分配模型的高分辨率全色遥感影像非监督分类

Unsupervised Classification of High-resolution Panchromatic Remote Sensing Image Based on Infinite Latent Dirichelt Allocation Using Block-Gibbs Sampling
下载PDF
导出
摘要 通过引入文本检索算法中的无限潜Dirichlet分配(infinite Latent Dirichlet Allocation,即iLDA)模型,对遥感影像进行建模以获取地物的统计分布及其共生关系,从而实现遥感影像非监督分类。首先,将遥感影像有重叠地划分成一组大小相等的影像块(文集)。其次,以iLDA为基础,构建"像元"(视觉词)、"影像块"(文档)和"地物类"(主题)之间的条件概率关系,并采用Block-Gibbs抽样的方法来估计模型参数,从而构建基于BlockGibbs抽样的iLDA遥感影像非监督分类模型(Block-Gibbs based iLDA,即BG-iLDA)。最后,通过对BG-iLDA模型的逼近求解实现高分辨率遥感影像的非监督分类。实验结果表明,本文提出的基于BG-iLDA的面向对象非监督分类方法相对传统的K-means等算法精度更高,更能有效区分"同谱异物"的地物。 In this paper,the infinite Latent Dirichlet Allocation (iLDA)model for unsupervised classification of images is introduced.An effective unsupervised classification method using the semantic information and the symbiotic relationship from iLDA is proposed,which is used for high-resolution panchromatic images.Firstly,the image corpus is structured by overlapped segmentation of the image into sub-images.Secondly,the relationship of conditional probability among pixels (visual-words), sub-images (documents)and land objects (topics)is built.By which,the proposed method using Block-Gibbs based iLDA (BG-iLDA)is modeled.And the model parameters are estimated using the Block-Gibbs sampling.Finally,the unsupervised classification of high-resolution panchromatic images is realized by approximate solution of the BG-iLDA.Experimental results show the classification precision of the proposed method is better than the K-means method,and the effect of the different object with the same spectral characteristics is appropriately displayed by the classification result.
出处 《遥感信息》 CSCD 北大核心 2015年第1期26-32,50,共8页 Remote Sensing Information
基金 国家高技术研究发展计划课题(2012AA121302) 国家科技支撑计划课题(2012BAH12B01 2012BAH12B03)
关键词 无限潜Dirichlet分配 非监督分类 Block-Gibbs Dirichlet过程 infinite Latent Dirichlet Allocation unsupervised classification Block-Gibbs Dirichlet process
  • 相关文献

参考文献20

  • 1易文斌,慎利,齐银凤,唐宏.基于概率潜语义分析模型的高光谱影像层次聚类分析[J].光谱学与光谱分析,2011,31(9):2471-2475. 被引量:5
  • 2苏伟,李京,陈云浩,张锦水,胡德勇,刘翠敏.基于多尺度影像分割的面向对象城市土地覆被分类研究——以马来西亚吉隆坡市城市中心区为例[J].遥感学报,2007,11(4):521-530. 被引量:113
  • 3David M. Blei.Probabilistic topic models[J]. Communications of the ACM . 2012 (4)
  • 4Hong Tang,Li Shen,Xin Yang,Yinfeng Qi,Weiguo Jiang,Adu Gong.A MRF-Based Clustering Algorithm for Remote Sensing Images by Using the Latent Dirichlet Allocation Model[J]. Procedia Earth and Planetary Science . 2011
  • 5Maria Halkidi,Yannis Batistakis,Michalis Vazirgiannis.On Clustering Validation Techniques[J]. Journal of Intelligent Information Systems . 2001 (2-3)
  • 6Thomas Hofmann.Unsupervised Learning by Probabilistic Latent Semantic Analysis[J]. Machine Learning . 2001 (1-2)
  • 7Xia, Gui-Song,He, Chu,Sun, Hong.A rapid and automatic MRF-based clustering method for SAR images. IEEE Geoscience and Remote Sensing Letters . 2007
  • 8Mauro C,Eufemia T.Accuracy assessment of per-fieldclassification integrating very fine spatial resolution satellite im-agery with topographic data. Journal of Geospatial Engineering . 2001
  • 9Blei D M,Ng A Y,Jordan M I.Latent Dirichlet allocation. Journal of Machine Learning Research . 2003
  • 10Xiaogang Wang,Xiaoxu Ma,Grimson, W.E.L.Unsupervised Activity Perception in Crowded and Complicated Scenes Using Hierarchical Bayesian Models. Pattern Analysis and Machine Intelligence, IEEE Transactions on . 2009

二级参考文献42

共引文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部