期刊文献+

基于Hooke-Jeeves算法的挠性粘接件的高效内聚反演分析 被引量:16

AN EFFECTIVE INVERSE ANALYSIS OF COHESIVE PARAMETERS OF FLEXIBLE ADHESIVE JOINTS BASED ON THE HOOKE-JEEVES ALGORITHM
原文传递
导出
摘要 该文发展了一种标准试验与直接搜索算法相结合的反演分析方法,用于挠性粘接件的界面内聚力模型的参数获取。实验部分中通过单轴拉伸实验和双悬臂夹层梁实验来获取粘接强度和断裂能,内聚能采用了有效裂纹长度的概念来修正裂纹尖端塑性变形的影响。反演分析是以实验值为初始值,采用Hooke-Jeeves优化算法来实施的。整个反演分析过程是通过自动执行的程序来完成,程序包含Hooke-Jeeves优化算法、结果数据库、有限元软件的调用和目标函数的构建四大模块构成。通过推进剂/绝热层粘接试样来验证了反演分析方法的准确与高效性,结果表明该方法相比基于全局优化算法的反演分析方法具有更高的计算效率。 An inverse analysis combining standard experiments and the direct search algorithm is developed in this study to determine cohesive parameters of flexible adhesive joints. The experimental part includes the uniaxial tensile tests and the double cantilever sandwich beam tests, which are used to obtain fracture parameters. The concept of effective crack length is used to eliminate the effects of plastic deformation on the fracture energy. The inverse analysis, taking the experimental values as initial input, is based on the Hooke-Jeeves algorithm. The entire analysis is automatically performed by running a program, which incorporates the Hooke-Jeeves algorithm, the resultant database, calling the Finite Element Method(FEM) software and the construction of objective functions. The credibility and accuracy of the proposed inverse analysis is confirmed by propellant/insulation tests. Results indicate that this method is more computationally efficient than other inverse analysis methods using global optimization algorithms.
出处 《工程力学》 EI CSCD 北大核心 2015年第4期1-7,共7页 Engineering Mechanics
基金 总装重点预研项目(20101019)
关键词 反演分析 粘接界面 Hooke-Jeeves优化算法 内聚力模型 断裂能 inverse analysis adhesive interface Hooke-Jeeves algorithm cohesive zone model fracture energy
  • 相关文献

参考文献3

二级参考文献49

  • 1蒙上阳,唐国金,雷勇军.固体发动机包覆层与推进剂界面脱粘裂纹稳定性分析[J].固体火箭技术,2004,27(1):46-49. 被引量:28
  • 2尹华丽,李东峰,王玉,张纲要.组分迁移对NEPE推进剂界面粘接性能的影响[J].固体火箭技术,2005,28(2):126-129. 被引量:32
  • 3[1]Jin Quanlin, Hai Jintao. Superplastic constitutive relation and its application [J]. Materials Science Forum, 1997, 243-245: 179-184.
  • 4[2]Gelin J C, Ghouati O. An inverse solution procedure for material parameters identification in large plastic deformations [J]. Communications in Numerical Methods in Engineering, 1996, 12(3):161-173.
  • 5[3]Moré J J. The Levenberg-marquardt algorithm: Implementation and Theory[A]. Waston G. A, Lecture Notes in Mathematics 630: numerical analysical [C]. Berlin: Springer-Verlag, 1978. 105-116.
  • 6[4]Mahnken R, Stein E. Parameter identification for viscoplastic models based on analytical derivatives of a least-squares functional and stability investigations [J]. International Journal of Plasticity, 1996, 12(4): 451-479.
  • 7[5]Herrera F, Lozano M, Verdegay J L. Tackling real-coded genetic algorithms: operators and tools for behavioral analysis[J]. Artificial Intelligence Review, 1998, 12(4): 265-319.
  • 8[7]Ghosh A K. Characterization of superplastic behavior of metals [A]. Hamilton. C. H. & Paton, N. E., Superplastic forming of structural alloys[C]. The Mmetallurgical Society of AIME, 1982. 83-105.
  • 9[8]D P Bertsekas. Projected newton methods for optimization problems with simple constraints[J]. SIAM Journal Control and Optimization, 1982, 20(2): 221-246.
  • 10[9]Ghosh A K, Hamilton C H. Mechanical Behavior of hardening Characteristics of a Superplastic Ti-6Al-4V Alloy [J]. Metallurgical Transactions A, Physical Metallurgy and Materials Science, 1979, 10A(6): 699-706.

共引文献19

同被引文献104

引证文献16

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部