期刊文献+

应用自适应神经模糊推理系统(ANFIS)的ET_0预测 被引量:18

Prediction of daily reference evapotranspiration using adaptive neuro-fuzzy inference system
下载PDF
导出
摘要 参照作物腾发量是计算作物需水量和进行灌溉预报的基础要素。该文利用自适应神经模糊推理系统(ANFIS)所具有的直接通过模糊推理实现输入层与输出层之间非线性映射能力,和神经网络的信息存储和学习能力,将其应用于参照作物腾发量预测中。根据相关分析,输入变量选择日照时数和日最高气温;用5年共1827个数据组对系统进行训练,建立了参照作物腾发量预测系统。利用该系统对近年213个数据组进行了实际预测,与Penman-Monteith方法计算结果进行比较,结果相关性良好。 The estimation of evapotranspiration from vegetated surfaces is a basic tool to compute water balances and to estimate water availability and requirements. Reference evapotranspiration (ET_0) just reflects weather conditions. Adaptive Neuro-Fuzzy Inference System(ANFIS), has the capacity of non-linear mapping between input layer and output layer by fuzzy inference, and has storing and learning ability with the information of the neural network at the same time. In this paper, the computation of daily ET_0 by ANFIS is presented, comparing the results with the ET_0 calculated through FAO Penman-Monteith method in the same period. Sunlight hour and maximum air temperature are as input variables in ANFIS according to regression analysis between every weather factor. The ANFIS for ET_0 estimator is built from training data, whose array list includes 1827 data of five years. The result of testing data of 213 datum groups, to estimate ET_0 using the ANFIS, is acceptable comparing with the result of Penman-Monteith method.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2004年第4期13-16,共4页 Transactions of the Chinese Society of Agricultural Engineering
基金 863"资助项目"作物水分信息采集与精量控制灌溉技术"(No.2001AA242062-03)部分研究内容
关键词 ET0 预测 ANFIS 模糊推理 神经网络 ET_0 prediction ANFIS fuzzy inference neural network
  • 相关文献

参考文献8

二级参考文献21

  • 1王献昌.人工智能的研究趋向多元化——参加第十三届国际人工智能联合大会总结报告[J].计算机科学,1994,21(1):1-6. 被引量:3
  • 2茆智,李远华,李会昌.逐日作物需水量预测数学模型研究[J].武汉水利电力大学学报,1995,28(3):253-259. 被引量:59
  • 3郑君里 杨行峻.人工神经网络[M].北京:高等教育出版社,1992..
  • 4宋滔.应用计算机视觉进行作物籽粒形态识别的研究:[博士学位论文].中国农业大学,1995..
  • 5李友善 李军.模糊控制理论及其在过程控制中的应用[M].北京:国防工业出版社,1996..
  • 6[1]ZADEH L A. Fuzzy sets[J]. Information and Control, 1965(8): 338-353.
  • 7[2]KOSKO B. Neural Networks and Fuzzy Systems[M]. Prentice. Hall, Englewood, Cliffs,1992.
  • 8[3]AUSTROM K J. Directions in Intelligent Control[J], Plenary session IFAC International Symposium 1991(2):15-17.
  • 9[4]JANG J R. ANFIS: Adaptive-Network-Based Fuzzy Inference System[C]. IEEE Trans on SMC, 1993,23(3): 665-683.
  • 10龚元石,北京农业大学学报,1995年,1期

共引文献356

同被引文献169

引证文献18

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部