期刊文献+

基于稳定域边界的主导不稳定平衡点(BCU)法前提条件的验证 被引量:10

A RESTRICTION ON THE POWER SYSTEM BY THEORETICAL REQUISITIONS OF THE BCU METHOD
下载PDF
导出
摘要 通过对基于稳定域边界的主导不稳定平衡点法(Boundary of stabiliIy based controlling unstable equilibrium point method,BCU)的前提条件的分析,得到了当故障清除后的电力系统不完全稳定时,应用该方法的一个必要条件:相关的广义梯度系统不完全稳定。并证明了使该条件得到满足的一个充分条件:广义梯度系统无源点。在稳定性分析中,可以通过检验该条件来间接地检验电力系统是否满足BCU法的前提条件。对一个4机系统和IEEE 50机测试系统的计算验证了上述的结果。 A necessary condition for the employment of BCU method in power system transient stability analysis is derived from theoretical requisitions of this method. Basing on results of differential topology, it is proved that, for a not-complete stable power system, conditions of BCU method require the associated general gradient system be not-complete stable.Additionally, for a general gradient system, if all the equilibrium points are hyperbolic, and the stable manifolds as well as the unstable manifolds of the unstable equilibrium points on the stability boundary satisfy the transversality condition,then the system must have a source point.This gives a sufficient condition for the not-complete stability of the general gradient system,i.e. it has no source point.This condition only relates to the type of equilibrium points.These conditions are verified on the WSCC four-machine system and IEEE 50-machine test system.
出处 《中国电机工程学报》 EI CSCD 北大核心 2004年第6期35-39,共5页 Proceedings of the CSEE
基金 国家杰出青年科学基金(59925718)
关键词 电力系统稳定性 主导不稳定平衡点法 稳定域边界 可靠性 Power system stability Transient stability BCU method Complete stability
  • 相关文献

参考文献18

  • 1Chiang H D, Wu F F, Varalya P P. A BCU method for direct analysis of power system transient stability[J]. IEEE Trans. Power Syst.,1994,8(3): 1194-1208.
  • 2Chiang H D. Analytical results on direct methods for power system transient stability analysis[C]. Advances in control and Dynamical Systems, Volume XL, New York: Academic, 1991, 43(3): 275-334.
  • 3Chiang H D, Chu C. Theoretical foundation of the BCU method for direct stability analysis of network-reduction power system models with small transfer conductance [J]. IEEE Trans. on Circuits and systems, 1995,42(5): 252-265
  • 4Tong J, Chiang H D ,Conneen T P. A sensitivity-based BCU method for fast derivation of stability limits in electric power systems[J]. IEEE Trans. on Power Systems, 1993, 8(4): 1418-1428.
  • 5A. Llamas, J. De La Ree Lopez, L. Mili, et al. Clarifications of the BCU method for transient stability analysis [J]. IEEE Trans on Power Systems, 1995, 10(1): 210-219.
  • 6Paganini F, Lesieutre B C. Generic properties, one-parameter deformations, and the BCU method [J]. IEEE Trans on Circuits and Systems-l: 1999, 46(6): 760-763.
  • 7Chillingworth D R J. Differential topology with a view to applications[M]. London:Pitman Publishing, 1976.
  • 8Smale, S. Differentiable dynamical systems[J]. Bull. A.M.S., 1967,73:747-817.
  • 9Robinson, R.C. Structural stability of C1 flows[C]. in Dynamical Systems-Warwick 1974,Lecture notes in Mathematics 468, ed.Manning, A.K., Springer-Verlag, Berlin, 1975.
  • 10Aropostathis A, Sastty S S, Varalya P. Global analysis of swing dynamics[J]. IEEE Trans on Circuits and Systems, 1982, CAS29(10): 673-679.

二级参考文献12

  • 1冯飞,余贻鑫.电力系统功率注入空间的动态安全域[J].中国电机工程学报,1993,13(3):14-22. 被引量:29
  • 2Hill D J, Chong C N. Lyapunov functions of lur'e-postnikov form for structure preserving models of power system [J]. Automatica, 1989,25(3): 453-460.
  • 3Hill D J. On the equilibria of power systems with nonlinear loads [J].IEEE Trans. on Circuits and Systems, 1989, 36(11): 1458-1463.
  • 4Pai M A. Energy function analysis for power system stability [M].Boston: Kluwer Academic Publishers, 1989.
  • 5杜正春,电力系统及其自动化学报,1993年,5卷,1期
  • 6杜正春,博士学位论文,1993年
  • 7李明节,博士学位论文,1991年
  • 8Xia D,IEEE Trans PAS,1983年,102卷,7期,2038页
  • 9团体著者,电力系统计算,1978年
  • 10Chiang H D,IEEE/PES 1991 Summer Meeting,1991年

共引文献91

同被引文献117

引证文献10

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部