摘要
通过对基于稳定域边界的主导不稳定平衡点法(Boundary of stabiliIy based controlling unstable equilibrium point method,BCU)的前提条件的分析,得到了当故障清除后的电力系统不完全稳定时,应用该方法的一个必要条件:相关的广义梯度系统不完全稳定。并证明了使该条件得到满足的一个充分条件:广义梯度系统无源点。在稳定性分析中,可以通过检验该条件来间接地检验电力系统是否满足BCU法的前提条件。对一个4机系统和IEEE 50机测试系统的计算验证了上述的结果。
A necessary condition for the employment of BCU method in power system transient stability analysis is derived from theoretical requisitions of this method. Basing on results of differential topology, it is proved that, for a not-complete stable power system, conditions of BCU method require the associated general gradient system be not-complete stable.Additionally, for a general gradient system, if all the equilibrium points are hyperbolic, and the stable manifolds as well as the unstable manifolds of the unstable equilibrium points on the stability boundary satisfy the transversality condition,then the system must have a source point.This gives a sufficient condition for the not-complete stability of the general gradient system,i.e. it has no source point.This condition only relates to the type of equilibrium points.These conditions are verified on the WSCC four-machine system and IEEE 50-machine test system.
出处
《中国电机工程学报》
EI
CSCD
北大核心
2004年第6期35-39,共5页
Proceedings of the CSEE
基金
国家杰出青年科学基金(59925718)