期刊文献+

激光大气闪烁的分形分析 被引量:1

Fractal characteristics of laser scintillation in the atmosphere
下载PDF
导出
摘要  采用分形理论分析了激光大气闪烁的统计特征。研究结果表明:在弱起伏条件下,激光大气闪烁的分形维和奇异性随光强起伏的增强而增大,而其长期相关性则减小;不同Fresnel尺度下具有相同闪烁指数的激光大气闪烁的分形特征存在着明显的差别;在强起伏条件下,有限的数据中尚未发现分形维有饱和现象,因此可以用来描述激光大气闪烁的强度。 Laser scintillation in the turbulent atmosphere was analyzed using the fractal methods, especially its fractal dimension and Hurst exponent. The results show that: the laser scintillation is a nonstationary random process with long-run and positive correlation. In the weak fluctuation conditions (the scintillation index in the range of 0 to 1.2), the fractal dimension would increase and the Hurst exponent would decrease with the increase of the scintillation index. That means the scintillation's intensity and complexity both increase and the temporal correlation decreases as the degree of fluctuation increases. In the strong fluctuation conditions, the limited data may reflect that the fractal dimension keeps on increasing, and no saturation appears. In addition, the effect of the Fresnel zone to the scintillation was also studied in the paper and some new results was obtained.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2004年第7期821-824,共4页 High Power Laser and Particle Beams
基金 国家863计划项目资助课题
关键词 分形维 R/S分析 HURST指数 多重分形 Fresnel尺度 Earth atmosphere Fast Fourier transforms Fractals Scintillation
  • 引文网络
  • 相关文献

参考文献6

  • 1[1]Tatarskii. Wave propagation in the turbulent atmosphere[M]. Beijing: Science Press, 1978.
  • 2[2]Anthony Davis. Multifractal characterizations of intermittency in nonstationary geophysical signals and fields[A]. Current Topics in Nonstationary Analysis[C]. Singapore World-Scientific: 1996. 97-158.
  • 3[3]Mandelbrot B B. Fractal geometry of the nature[M]. Shanghai: Far-east Press, 1998.
  • 4[5]Hurst H E. Methods of using long-term storage in reservoirs[A]. Proc of the Institution of Civil Engineers Part I[C]. 1955. 519-577.
  • 5[6]Mandelbrot B B. Long-run linearity, locally Gaussian process, H-spectra and infinite variance[J]. International Economic Review, 1969,10:82-111.
  • 6[7]Falconer K J. Fractal geometry: mathematical foundation and application[M]. Shenyang: North-east University Press, 1990.340-353

同被引文献27

引证文献1

二级引证文献2

相关主题

;
使用帮助 返回顶部