期刊文献+

受曲面约束弹性细杆的平衡问题 被引量:14

Problems on equilibrium of a thin elastic rod constrained on a surface
原文传递
导出
摘要 作为DNA等一类生物大分子的力学模型 ,弹性细杆的非线性力学再次受到关注 ,形成一个力学与分子生物学的交叉学科 .除了不受外界约束的自由弹性细杆外 ,受曲面约束的弹性细杆静力学具有重要的应用背景 .在分析约束、约束方程和约束力的基础上建立了受曲面约束的圆截面弹性细杆的平衡微分方程 ,即曲面上的Kirchhoff方程 ,它是以截面主矢和截面姿态坐标以及中心线的Descartes坐标为变量的微分 代数方程 .作为应用 ,讨论了约束是圆柱面的情形 .此时平衡的无量纲方程仅含的物理参数是截面对形心的抗扭刚度和对主轴的抗弯刚度的比值 ,与几何参数无关 .由此导出方程的螺旋杆特解 .数值计算表明 ,对弹性细杆中心线的几何形状有显著影响的是截面主矢和姿态坐标及其导数的起始值 ,而不是物理参数 . Nonlinear mechanics of thin elastic rod, as a model of DNA, aroused extensive interest as a joint research subject of mechanics and molecular biology. The study of the equilibrium of a thin elastic rod constrained on a surface found an important application in industry, especially in molecular biology. In the present paper the constraint equations and constraint forces of the elastic rod are analyzed, and the differential/algebraic equations of equilibrium are established with the arc-coordinate of the central line as the independent variable. In a special case when the constraint surface is a cylinder the dimensionless differential equations contain only one physical parameter, the ratio of the bending and torsional stiffness of the cross section. A special solution of helical equilibrium can be derived and is corresponding to a regular precession of the Lagrange heavy rigid body about a fixed point. The numerical analysis shows that the geometrical form of the central line is dependent on the initial conditions of the rod more than its physical parameters.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2004年第7期2040-2045,共6页 Acta Physica Sinica
关键词 弹性细杆 DNA超螺旋 曲面约束 螺旋杆 分子生物学 thin elastic rod, DNA surpercoils, surface constraint, helical rod
  • 相关文献

参考文献3

二级参考文献25

  • 1Kirchhoff G. U¨ber das Gleichgewichtund die Bewegung eines unendlich dünnen elastischen Stabes[J]. J Rein Angew Math,1859,56:285-313.
  • 2Love A E H. A treatice on mathematical theory of elasticity[M]. 4th ed. New York: Dover,1944.381-426.
  • 3Benham C J. An elastic model of the large-scale structure of duples DNA[J]. Biopolymers,1979,18:609-623.
  • 4Coyne J. Analysis of the formation and elimination of loops in twisted cable[J]. IEEE J of Oceanic Engineering,1999,15(2):72-83.
  • 5Van Der Heijden G H M, Champneys A R, Thompson J M T. The spatial complexity of localized buckling in rods with noncircular cross section[J]. SIAM J Appl Math,1998,59(1):198-221.
  • 6Chetayev N G. The stability of motion[M]. New York: Pergamon,1961.
  • 7Ge Z M. Motion stability of classic gyroscopes[M]. Hsinchu: Gao Lih,1998. LIU Yan-zhu. Buckling of compressed bar and Lyapunov stability[J]. Mechanics and Practice,2002,24(4):56-59.
  • 8Noether A E 1918 Nachr. Akad. Wiss. Math. Phys. 2 235
  • 9Lutzky M 1979 J. Phys. A: Math. Gen. 19 105
  • 10Mei F X 2000 Acta Mech. 141 135

共引文献60

同被引文献109

引证文献14

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部