期刊文献+

作物淀粉生物合成与转基因修饰研究进展 被引量:10

Advance in Starch Biosynthesis and Transgenic Modification in Crops
下载PDF
导出
摘要 淀粉是高等植物中碳水化合物的主要贮藏形式 ,也是粮食作物产品的最主要成分。淀粉虽然都由直链淀粉和枝链淀粉组成 ,但在不同作物中两者的比例和枝链淀粉结构的存在很大差异。现已明确 ,直链淀粉是在颗粒结合淀粉合成酶 (granule boundstarchsynthase,GBSS)催化下合成的 ,而枝链淀粉是四种酶共同作用的结果 ,它们分别是腺嘌呤 -葡萄糖焦磷酸化酶 (ADP glucosepyrophosphorylase ,AGP) ,可溶性淀粉合成酶 (solublestarchsynthase ,SSS) ,淀粉分枝酶 (starchbranchingenzyme ,SBE)和脱分枝酶 (starchdebranchingenzyme ,DBE)。一方面 ,在不同作物中 ,这些酶本身存在多种形式 ,如在玉米胚乳中 ,AGP有大亚基和小亚基之分 ,SBE又可分BE1,BEIIa ,BEIIb 3种 ,SSS也可分为SSI和SSIII(或SSIIa)两种 ,而DBE也有异淀粉酶 (isoamylase)和限制性糊精酶 (pullu lanase)两种。另一方面 ,控制特定酶的基因 ,在不同作物甚至在同一种作物的不同品种中也可能存在不同的复等位基因 ,如籼稻和粳稻的GBSS分别由蜡质基因Wxa 和Wxb 控制 ,两者编码的GBSS活性差异显著。此外 ,环境条件也可通过影响基因的转录使酶的含量或催化性能发生变化。迄今 ,国内外已获得多种马铃薯和水稻的转基因材料 ,对淀粉合成进行修饰 。 Starch is the major storage carbohydrate in higher plants, and also the most important ingredient in food crops. Starch property varies greatly due to amylose to amylopectin ratio and amylopectin structure, which consequently influences its function and utility. In recent years, rapid progresses have been achieved towards the molecular biology of starch synthesis, nearly all related genes or gene fragments have been cloned. Starch synthesis starts with the formulation of Glucose-1-ADP catalyzed by ADP-glucose pyrophosphorylase, and more glucose are added by various starch synthases, such as soluble starch synthase (SSS), starch branching enzyme (SBE), granule-binding starch synthase (GBSS). It is then modified by debraching catalyzed by debranching enzyme (DBE), and elongated to some extent catalyzed by SSS and finally forms into starch granules. It has been know that the amylose syntheses are catalyzed by GBSS, while amylopectin by all in concerts. All these enzymes above have found being in multiform, for instance, in maize endosperm, AGPase consist of big and small subunits, SBE has isoforms of SBEI, SBEIIa and SBEIIb, and SSS of SSI and SSIII(or SSIIa), and DBE of isoamylase and pullulanase as well. In addition, among different crops even cultivars, genes encoding each enzyme may be distinct, eg, GBSS is controlled by Wx a and Wx b in indica and japonica rice respectively. Furthermore, the growing environmental can affect the expression level of a certain gene, regulated at transcriptional level. These genetic and environmental factors have resulted in various types of starches. With the rapid developments of transgenic technology and understanding of molecular biology of the starch biosynthesis, it becomes possible to artificially regulate starch synthesis. And thus opened a novel way to breeding of high quality cultivars and producing starches with new prosperities. This paper reviews the newest advancement on molecular biological researches of starch synthesis and improvement of the starch qualities by using transgenic technology, and at last, its prospects were discussed in this fascinating area.
出处 《生物技术通报》 CAS CSCD 2004年第4期19-26,共8页 Biotechnology Bulletin
关键词 淀粉 生物合成 转基因修饰 品质 遗传转化 作物 Starch Biosynthesis quality genetic transformation Crop
  • 相关文献

参考文献60

  • 1KimKN, FisherDK, etal. Gene, 1998, 216:233-243.
  • 2Slattery CJ, Kavakli IH, et al. Trends Plant Science, 2000, 5(7):291-298.
  • 3Fernie AR, Willmitzer L, et al. Trends Plant Sci, 2002, 7(1): 35-41).
  • 4Salamone PR, Greene TW, et al. FEBS Letters, 2000, 482:113-118.
  • 5Sivak MN, Preiss J. Adv. Food Nutr. Res, 1998, 41 (2): 75-88.
  • 6Peng MS, HuclP, etal. Plant Sci, 2001, 161: 1055-1062.
  • 7Murai J, Taira T, et al. GENE, 1999, 234: 71-79.
  • 8Kristensen M, LokF, etal. BBA, 1999, 1431, 538-546.
  • 9Nakamura Y, Umemoto T, et al. Planta,1996, 199: 209-218.
  • 10NakamuraY. Plant Sci, 1996, 121: 1-18.

二级参考文献21

  • 1顾兴友,顾铭洪,张正根,左文忠.糯性位点对稻米粒重的效应分析[J].杂交水稻,1995,10(6):31-32. 被引量:7
  • 2李枞,宋艳茹.利用基因工程的手段提高植物中淀粉含量[J].植物学通报,1995,12(1):6-13. 被引量:6
  • 3徐云碧,申宗坦.水稻糯质基因对产量构成性状的影响[J].作物学报,1989,15(3):237-242. 被引量:26
  • 4顾铭洪.糯稻杂交育种技术[J].科学种田,1978,7:13-16.
  • 5刘巧泉 中国农学会.反义uaxy基因导入水稻降低胚乳直链淀粉含量的研究.21世纪水稻遗传育种展望[M].北京:中国农业出版社,1999.206-213.
  • 6Preiss J. Regulation of the biosynthesis and degradation of starch. Ann Rev Plant Physiol, 1982,33: 431 - 454.
  • 7Steiner J J, Poklemba C J, Fjellstyom R G, et al. A rapid onetube genomic DNA extractional process for PCR and RAPD analyses. Nucleic Acids Research, 1995,23:2569 2570.
  • 8Zheng K L, Huang N, Bennett J, et al. PCR-based marker-assisted selection in rice seeding. IRRI Discussion Paper Series No. 12. Manila: International Rice Research Institute, 1995.
  • 9Zambryski P. Basic processes underlying Agrobacterium -mediated DNA transfer to plant cells. Annu Rev Genet, 1988,22: 1-30.
  • 10Lin H S(林鸿生),Hua Z H(华志华),Lu D Z(卢德赵),et al.Comparative study on selective marker genes used in rice trans formation by particle bombardment. Acta Agric Shanghai (上海农业学报),2001,17 (3): 9 - 12. (in Chinese with English abstract )

共引文献57

同被引文献229

引证文献10

二级引证文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部