期刊文献+

中国股市收益率的多重分形分析 被引量:50

The Multifractal Analysis on Stock Market Returns in China
原文传递
导出
摘要  应用MF-DFA方法对上海综合指数收益率和深圳成分指数收益率进行多重分形分析.结果表明:上证综指收益率和深成指收益率均具有多重分形特征,均存在长程相关性和胖尾分布;深成指收益率序列的相关性程度高于上证综指收益率序列的相关性程度,从而上证综指收益率的波动性大于深成指收益率的波动性. This paper researches multifractality of Shanghai synthesis index returns and Shenzhen composition index returns by use of MF-DFA. The results show both Shanghai synthesis index returns and Shenzhen composition index returns have multifractality, present long-rang correlation and fat trail distribution; Shenzhen composition index returns has stronger correlation than Shanghai synthesis index, thus the fluctuation of Shanghai synthesis index is bigger than that of Shenzhen composition index returns.
作者 卢方元
出处 《系统工程理论与实践》 EI CSCD 北大核心 2004年第6期50-54,143,共6页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70171054)
关键词 收益率 MF-DFA方法 多重分形 return MF-DFA method multifractal
  • 引文网络
  • 相关文献

参考文献12

  • 1[1]Barabasi A L, Vicsek T. Multifractality of self-affine fractals[J]. Phys Rev A, 1991, 44:2730-2733.
  • 2[2]Peitgen H O, Jurgens H, Saupe D. Chaos and Fractals[M]. New York: Springer, 1992 (Appendix B).
  • 3[3]Bacry E, Delour J, Muzy J F. Multifractal random walks[J]. Phys Rev E, 2001, 64:026103-026106.
  • 4[4]Ivanov P Ch, Amaral L A N, Goldberger A L, et al. Multifractality in human heartbeat dynamics[J]. Nature,1999,399:461-465.
  • 5[5]Amaral L A N, Ivanov P Ch, Aoyagi N, et al. Behavioral-independent features of complex heartbeat dynamics Phys[J]. Rev Lett, 2001, 86:6026-6029.
  • 6[6]Silchenko A, Hu C K. Multifractal characterization of stochastic resonance[J]. Phys Rev E, 2001, 63:041105-041115.
  • 7[7]Kantelhardt J W, Stephan A Z, Eva K B, et al. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A, 2002, 316: 87-114.
  • 8[8]Schmitt F, Shertze D, lovejoy S. Multifractal fluctuations in finance[J].International Journal of Theoretical and Applied Finance,2000,(3):361-364.
  • 9[9]bouchaud J P, Potters M,Meyer M. Apparent multifractality in financial time series[J].Eur Phys J B, 2000,13:595-599.
  • 10[10]Muzy J F,Delour J,Bacry E. Modeling fluctuation of financial time series: from cascade process to stochastic volatility mode[J].Eur. Phys. J. B,2000,17:537-548.

二级参考文献4

共引文献17

同被引文献504

引证文献50

二级引证文献200

;
使用帮助 返回顶部