期刊文献+

一种基于蚁群算法的聚类组合方法 被引量:39

Clustering Combination Based on Ant Colony Algorithm
下载PDF
导出
摘要 蚂蚁等群居类昆虫被看作能解决复杂问题的分布式系统,研究者从它们的协作性能以及自组织、信息素通信、任务划分等机理中获得灵感,已在组合优化、通信网络、机器人等许多应用领域找到解决问题的新方法。聚类作为一种无监督的学习,能根据数据间的相似程度自动地进行分类。基于蚁群算法的聚类方法已经在当前数据挖掘研究中得到应用。本文提出的基于蚁群算法的聚类组合新方法,模仿多蚁群的协作性能,将运动速度类型各异的多个蚁群,独立而并行地进行聚类分析,然后组合其聚类结果为超图,再用蚁群算法对超图进行2次划分。实验结果表明,该方法能自动决定聚类的数目,聚类组合方法能明显改善聚类质量。 Social insects such as ants can be viewed as distributed systems capable of solving complex problems. The collective behavior of ant colonies and the mechanisms of their self-organization, pheromone communication and task partitioning have inspired researchers to design new algorithms for solving problems in many application fields, e.g. combinatorial optimization, communication networks, robotics. As an unsupervised learning technique, clustering is a division of data into groups of similar objects. The ant-based clustering algorithm has currently applications in the data mining community. This paper presents a new ant-based clustering combination algorithm, which imitates the cooperative behavior of multi-ant colonies. Initially each ant colony takes different types of ant moving speeds to generate independent clustering results, and then these results are combined using a hypergraph. Finally an ant-based graph-partitioning algorithm is used to cluster the hypergraph again. Results on real data sets are given to show that the number of clusters can be adaptively determined and clusterings combination can improve the clustering performance.
出处 《铁道学报》 EI CAS CSCD 北大核心 2004年第4期64-69,共6页 Journal of the China Railway Society
关键词 蚁群算法 聚类组合 超图 图划分 数据挖掘 ant colony algorithm clustering clustering combination hypergraph graph partitioning
  • 相关文献

参考文献11

  • 1贾利民,李平,聂阿新.新一代的铁路运输系统——铁路智能运输系统[J].交通运输工程与信息学报,2003,1(1):81-86. 被引量:6
  • 2石洪波,于剑,黄厚宽.一种有效的FCM算法的实现方式[J].铁道学报,2003,25(1):63-67. 被引量:9
  • 3Wu B,Shi Z. A clustering algorithm based on swarm intelligence[A]. In: Proceedings IEEE international conferences on info-tech & info-net proceeding[C]. Beijing,2001. 58-66.
  • 4Strehl A, Ghosh J. Cluster ensembles - a knowledge reuse framework for combining partitionings[A]. In: Proceedings of Artificial Intelligence[C]. Edmonton: AAAI/MIT Press, 2002. 93-98.
  • 5Ayad H, Kamel M. Topic discovery from text using aggregation of different clustering methods[A]. In: Cohen R,Spencer B ed. Advances in artificial intelligence: 15th conference of the Canadian society for computational studies of intelligence[C]. Calgary, 2002. 161-175.
  • 6Bonabeau E, Dorigo M, T heraulaz G. Swarm intelligencefrom natural to artificial system[M]. New York: Oxford University Press, 1999.
  • 7Deneubourg J L, Goss S, Franks N, et al. The dynamics of collective sorting: robot-like ant and ant-like robot[A]. In: Meyer J A, Wilson S W ed. Proceedings first conference on simulation of adaptive behavior: from animals to animats[C]. Cambridge, MA: MIT Press, 1991. 356-365.
  • 8Lumer E, Faieta B. Diversity and adaptation in populations of clustering ants[A]. In: Proc. third international conference on simulation of adaptive behavior: from animals to animats 3[C]. Cambridge, MA: MIT Press, 1994. 499-508.
  • 9Ramos V, Merelo J J. Self-organized stigmergic document maps: environment as a mechanism for context learning [A]. In: Alba E, Herrera F, Merelo J J, et al. , ed.AEB' 2002 - 1st Spanish conference on evolutionary and bioinspired algorithms[C]. Merida, 2002. 284-293.
  • 10Yang Y, Kamel M. Clustering ensemble using swarm intelligence[A]. In: IEEE swarm intelligence symposium [C]. Piscataway, NJ: IEEE service center, 2003. 65-71.

二级参考文献2

共引文献13

同被引文献264

引证文献39

二级引证文献155

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部