期刊文献+

高三轴应力条件下粒子填充粘弹性材料的能量耗散 被引量:2

ENERGY DISSIPATION IN PARTICULATE-REINFORCED VISCOELASTIC MATERIALS UNDER THE CONDITION OF HIGH STRESS TRIAXIALITY
下载PDF
导出
摘要 研究了微粒填充粘弹性材料在变形过程中的能量耗散。在高三轴度应力条件下,由于同时考虑了界面脱粘引起的损伤,故能量耗散主要可分为两部分1)由基体材料的粘性性质所引起的粘性耗散功;2)由界面全脱粘所引发的界面粘结能的耗散。结合微损伤演化的规律,在忽略惯性效应的前提下,导出了损伤耗散功的一般表达式。利用Mori-Tanaka平均应力场的概念,提出了一种方便地计算材料中的粘性耗散功的近似方法。在此基础上,计算了材料中的粘性耗散功和损伤耗散功,并讨论了加载速率、界面粘结能、基体材料的松弛时间、平均粒径和粒径分散度等对这两种耗散机制的影响。 In this paper, the energy dissipation in particulate-reinforced viscoelastic materials is investigated by means of mesomechanics method. Under the condition of high stress triaxiality, the dissipation can be divided into two parts, i.e., the viscous dissipation energy and the fully interfacial-debonding induced damage dissipation energy. The damage dissipation energy is calculated by neglecting the inertial effect. An approximate method to analyze the viscous dissipation energy is suggested by means of Mori-Tanakas scheme. As an example, the numerical calculations on the two types of dissipation energy are carried out. The effects of loading rate, interfacial adhesive energy, relaxation time of matrix material, average size of particles, and the particle-size dispersity on the energy dissipation are discussed.
出处 《工程力学》 EI CSCD 北大核心 2004年第3期167-173,共7页 Engineering Mechanics
基金 国家自然科学基金项目(10172074 10032010)
关键词 粘弹性 复合材料 能量耗散 微损伤演化 界面脱粘 viscoelasticity particle-filled composite energy dissipation microdamage evolution interfacial debonding
  • 相关文献

参考文献7

  • 1[1]T Kurauchi,T Ohta.Energy absorption in blends of polycarbonate with ABS and SAN[J].J.Mater.Sci.,1984,19: 1699.
  • 2[3]E H Mertz,G C Claver,M Baer.Studies on heterogeneous polymeric systems[J].J.Polym.Sci.1956,22: 325.
  • 3[4]C B Bucknall,R R Smith.Stress-whitening in high-impact polystyrenes[J].Polymer,1965,6: 437.
  • 4[6]Z P Huang,J K Chen.The evolution of a nucleated microvoid in a viscoelastic solid [C].Proc.of International Conference on Role of Mesomechanics for Development of Science and Technology (Sih,G.C.ed),2000.117.
  • 5[7]J D Eshelby.The determination of the elastic field of an ellipsoidal inclusion,and related problems [J].Proc.Roy.Soc.Lond.,1957,A241: 376.
  • 6[8]T Mori,K Tanaka.Average stress of matrix and average elastic energy of materials with mismatching inclusions[J].Acta Metall.,1973,221: 571.
  • 7[12]Z P Huang,J K Chen,H L Li,Y Liu.A constitutive model of a particle reinforced viscoelastic composite material with debonded microvoids[C].R.Wang(ed.),IUTAM Symposium on Rheology of Bodies with Defects,Kluwer Academic Publishers,Printed in Netherlands,1999.133.

同被引文献18

引证文献2

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部