期刊文献+

基于割集功率空间上的静态电压稳定域局部可视化方法 被引量:41

VISUALIZATION OF POWER SYSTEM STATIC VOLTAGE STABILITY REGION IN CUT-SET SPACE
下载PDF
导出
摘要 提出了一种新型快速的割集功率空间上电压稳定域边界局部近似算法,以用于实现静态电压稳定域的可视化。该算法首先在电力系统状态空间上推导出求解电压稳定域边界局部的线性方程组,利用该方程组可快速地求解出状态空间上的一组近似电压稳定域边界点;然后通过潮流方程将边界映射到割集功率空间上,解决了电压稳定域可视化的降维问题。在此基础上,可利用最小二乘法拟合出割集功率空间上的一个超平面,用以近似地表达电压稳定域边界。IEEE118节点系统算例结果表明,该方法能在割集功率空间上以较小的误差快速地近似表达出电压稳定域边界的局部;算法 对于实现电压稳定域的在线计算及可视化具有一定的实用价值。 This paper presents a new fast method to calculate and visualize static voltage stability region (SVSR) boundary. First linear equations are derived in power system state space, with these equations a group of points on SVSR boundary can be calculated very quickly, and then power flow equations are used to map these points from state space into cut-set space thus dimension of SVSR is reduced. Finally one hyper plane in cut-set space is formed based on these points by applying Least-Square Fitting Method. Study on IEEE. 118-bus system shows that the method can estimate SVSR boundary with satisfied accuracy and fast speed.
出处 《中国电机工程学报》 EI CSCD 北大核心 2004年第9期13-18,共6页 Proceedings of the CSEE
基金 国家自然科学基金项目(50177022) 高等学校优秀青年教师教学科研奖励计划基金项目 美国电力科学研究院合作科研基金项目(EPRI EP-P11543/C5729)~~
关键词 电力系统 割集功率空间 线性方程 静态电压稳定域 可视化 电压稳定性 Electric power engineering Power system Visualization Static voltage stability region (SVSR) Cut-set power space
  • 相关文献

参考文献12

  • 1[1]Hsiao-Dong Chiang,Cheng-Shan Wang,Flueck A.J.Look-ahead voltage and load margin contingency selection functions for large-scale power systems [J].IEEE Transactions on power systems,1997,12(1):173-180.
  • 2[2]N.Yorino,H.Q.Li,S.Harada,et al.A Method of voltage stability evaluation for branch and generator outage contingencies [J].IEEE Transactions on power systems,2004,19(1):252-260.
  • 3[4]S.Greene,I.Dobson,F.L.Alvarado.Sensitivity of the loading margin to voltage collapse with respect to arbitrary parameters [J].IEEE Transactions on power systems,1997,12(1):262-273.
  • 4[5]C.A.Canizares,N.Mithulananthan,A.Berizzi,et al.On the linear profile of indices for the prediction of saddle-node and limit-induced bifurcation points in power systems [J].IEEE Transactions on circuits and systems-I,2003,50(12):1588-1595.
  • 5[10]Venkatasubramanian V,Schattler H,Zaborszky J.Local bifurcations and feasibility regions in differential algebraic systems[J].IEEE Trans.Automat.Contr,1995,40(12):1992-2013.
  • 6[11]Venkatasubramanian V,Schattler H,Zaborszky J.Dynamics of large constrained nnonlinear systems-a taxonomy theory[J].Proceedings of the IEEE 1995,83(11):1530-1561.
  • 7[12]Chin-Woo Tan; M.Varghese,P.Varaiya,et al.Bifurcation,chaos,and voltage collapse in power systems [J].Proceedings of the IEEE,1995,83(11):1484-1496.
  • 8[13]Dobson.Observations on the geometry of saddle node bifurcation and voltage collapse in electrical power systems[J].IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications 1992,39(3):240-243.
  • 9[14]Alvarado、 Dobson,Computation of closest bifurcations in power system[J].IEEE Transaction on Power System.1994,9(2):918-928.
  • 10[17]Hiskens I A,Makarov Y V.Calculation of power system critical loading conditions[C].in Proc.Electrical Engineering Congress,Sydney Australia,Nov.24-30,1994:185-190.

同被引文献412

引证文献41

二级引证文献459

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部