期刊文献+

基于非线性互补问题函数的半光滑牛顿最优潮流算法 被引量:35

STUDY ON SEMISMOOOTH NEWTON OPTIMAL POWER FLOW ALGORITHM BASED ON NONLINEAR COMPLEMENTARITY PROBLEM FUNCTION
下载PDF
导出
摘要 提出了一种新的基于非线性互补问题(NCP)函数的半光滑牛顿办法,以用于求解最优潮流(OPF)问题。通过引入NCP函数,将OPF模型KKT条件的互补松弛约束转化为等 约束,并采用非光滑牛顿法求解。算法的突出优势在于能够有效地处理OPF模型中的不等式约束,从而完全避免了OPF计算中起作用的不等式约束的识别问题。同时,文中利用电力系统的弱耦合特性,构造了牛顿分解算法。IEEE多个算例的数值试验表明:提出的算法具有很好的收敛特性和计算效果,有很好的实际应用前景。 A novel Optimal Power Flow (OPF) algorithm using semi-smooth Newton method is presented. By introducing the so-called nonlinear complementarity problem (NCP) function, the Karush-Kuhn-Tucker (KKT) system of OPF is transformed equivalently to non-smooth equations and solved by semi-smooth Newton method. The remarkable advantage of this algorithm is its ability to handle the inequality constraints in OPF. The problem of identifying the binding inequality constraints is eliminated. Moreover, a decouple Newton algorithm is constructed according to the weak-coupling property of power systems. Numerical examples demonstrate that proposed algorithms are efficient and robust with a promising application.
出处 《中国电机工程学报》 EI CSCD 北大核心 2004年第9期130-135,共6页 Proceedings of the CSEE
基金 国家自然科学基金项目(50337010) 国家973重点基础研究专项基金项H(G1998020307) 香港特别行政区政府研究基金(RGC)~~
关键词 电力系统 非线性互补问题 NCP函数 半光滑牛顿最优潮流算法 Electric power engineering Power system Optimal Power Flow KKT System Nonlinear Complementarity Problem Semi-smooth Newton Method Decoupled Method
  • 引文网络
  • 相关文献

参考文献12

  • 1[2]Wang X,Song Y H,Lu Q.A coordinated real-time optimal dispatch method for unbundled electricity markets[J].IEEE Trans on Power Systems.2002,17 (2):482-490
  • 2[4]Sun D I,Ashley B,Brewer B,et al.Optimal power flow by Newton approach [J].IEEE Trans On PAS,1984,103 (10):2864-2880.
  • 3[5]Maria G A,Findlay J A.A Newton optimal power flow program for Ontario hydro EMS [J].IEEE Trans on Power Systems,1987,2 (3):576-584.
  • 4[6]Chang S K,Marks G E,Kato K.Optimal real-time voltage control [J].IEEE Trans on Power Systems,1990,5 (3):750-758.
  • 5[8]Torres G L,Quintana V H,Optimal power flow by a nonlinear complementarity method [J].IEEE Trans on Power Systems,2000,15 (3):1028-1033.
  • 6[9]Conejo A J,Nogales F J,Frieto F J.A decomposition procedure based on approximate Newton direction [J].Math.Program.2002,93:495-515.
  • 7[10]Harker P T,Pang J S.Finite-dimensional variational inequality and noniinear complementarity problems:Asurvey of theory,algorithms and applications [J].Mathematical Programming,1990,48:161-220.
  • 8[11]Fisher A.An NCP-function and its use for the solution of complementarity problems [C].in:Du D.Z.,Qi L and Wormersley R.S.,eds,Recent Advances in Nonsmooth Optimization (World Scientific,Singapore,1995:88-105.
  • 9[12]Facchinei F,Pang J S.Finite-dimensional variational inequalities and complementarity problems [M].New York,Berlin,Springer,2003.
  • 10[13]Ortega J M,Rheinboldt W C.Iterative solution of nonlinear equations in several variables [M].New York:Academic Press,1970.

同被引文献391

引证文献35

二级引证文献205

相关主题

;
使用帮助 返回顶部