摘要
提出了一种新的基于非线性互补问题(NCP)函数的半光滑牛顿办法,以用于求解最优潮流(OPF)问题。通过引入NCP函数,将OPF模型KKT条件的互补松弛约束转化为等 约束,并采用非光滑牛顿法求解。算法的突出优势在于能够有效地处理OPF模型中的不等式约束,从而完全避免了OPF计算中起作用的不等式约束的识别问题。同时,文中利用电力系统的弱耦合特性,构造了牛顿分解算法。IEEE多个算例的数值试验表明:提出的算法具有很好的收敛特性和计算效果,有很好的实际应用前景。
A novel Optimal Power Flow (OPF) algorithm using semi-smooth Newton method is presented. By introducing the so-called nonlinear complementarity problem (NCP) function, the Karush-Kuhn-Tucker (KKT) system of OPF is transformed equivalently to non-smooth equations and solved by semi-smooth Newton method. The remarkable advantage of this algorithm is its ability to handle the inequality constraints in OPF. The problem of identifying the binding inequality constraints is eliminated. Moreover, a decouple Newton algorithm is constructed according to the weak-coupling property of power systems. Numerical examples demonstrate that proposed algorithms are efficient and robust with a promising application.
出处
《中国电机工程学报》
EI
CSCD
北大核心
2004年第9期130-135,共6页
Proceedings of the CSEE
基金
国家自然科学基金项目(50337010)
国家973重点基础研究专项基金项H(G1998020307)
香港特别行政区政府研究基金(RGC)~~
关键词
电力系统
非线性互补问题
NCP函数
半光滑牛顿最优潮流算法
Electric power engineering
Power system
Optimal Power Flow
KKT System
Nonlinear Complementarity Problem
Semi-smooth Newton Method
Decoupled Method