期刊文献+

基于信息量失真测度的VQ及在高光谱图像无损压缩中的应用 被引量:12

A VQ Based on Information Distortion Measure and Its Application to Lossless Compression of Hyperspectral Image
下载PDF
导出
摘要 随着成像光谱技术的迅速发展 ,如何高效无失真的压缩海量高光谱数据引起人们越来越多的关注。由于相似的地表区域具有相似的光谱曲线 ,矢量量化是对高光谱图像进行压缩的理想算法。提出一种基于信息量失真测度的矢量量化编码方法 ,并用于高光谱图像无损压缩。与常用的矢量量化失真测度———欧几里德平方误差测度相比 ,该算法在不增加运算复杂度的情况下 ,矢量量化后的误差图像的熵值能够降低 0 0 5bpp左右。 The volume of image data generated by airborne and spaceborne remote sensing mission have been increased dramatically. The efficient lossless compression is urgent. A hyperspectral image comprises a number of bands, each of which represents the intensity of return from an imaged scene received by a sensor at a particular wavelength. Since the reflectance of the earth's surface and atmospheric absorption are wavelength dependent, the brightness vector formed in the spectral domain for each pixel will have a similar form. The relationship between type of ground and spectral response means that a hyperspectral image can be considered as a group of brightness vectors. Therefore VQ(vector quantization) an the ideal candidate for compression. If VQ is used to compress image losslessly, both the codevector index and the quantization error image should be sent to channel. The amount of codevector index is invariable, consequently, it is important to reduce the error image's average information amount, i.e. entropy, if we want to improve the coding efficiency. In this paper, a new VQ lossless compression method based on an information distortion measure is proposed. Using this new measure to match codevector, i.e. quantize vector, the coding efficiency can be improved without increasing complexity. Experimental results show that the entropy of the error image using VQ based on information distortion measure is about 0.05bpp (bits per pixel) lower than that on Euclidean square error measure.
出处 《遥感学报》 EI CSCD 北大核心 2004年第5期414-418,共5页 NATIONAL REMOTE SENSING BULLETIN
基金 北京市自然科学基金 北京市教委科技发展计划重点项目 (项目编号KZ2 0 0 3 10 0 0 5 0 0 4)
关键词 矢量量化 失真测度 无损压缩 高光谱图像 vector quantization distortion measure lossless compression hyperspectral image
  • 相关文献

参考文献6

  • 1[1]Aiazzi B, Alba P, Alparone L, et al. Lossless Compression of Multi/Hyper-Spectral Imagery Based on a 3-D Fuzzy Prediction [J]. IEEE Transactions on Geoscience and Remote Sensing, 1999,37(5): 2287-2294.
  • 2[3]Baizert P, Pickering M R, Ryan M J. Compression of Hyperspectral Data by Spatial/Spectral Discrete Cosine Transform [A]. Geoscience and Remote Sensing Symposium[ C]. 2001,4:1859-1861.
  • 3[4]Ryan M J, Arnold J F. The Lossless Compression of AVIRIS Images by Vector Quantization[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997,35 (3): 546-550.
  • 4[5]Qian S E, Hollinger A B, Williams D, et al. Vector Quantization Using Spectral Index-Based Multiple Subcodebooks for Hyperspectral Data Compression[ J]. IEEE Transactions on Geoscience and Remote Sensing ,2000,38(3): 1183-1190.
  • 5[6]Pickering M R, Ryan M J. Efficient Spatial-Spectral Compression of Hyperspectral Data [ J]. IEEE Transactions on Geoscience and Remote Sensing ,2001,39(7): 1536-1539.
  • 6[7]Pickering M R, Ryan M J. Compression of Hyperspectral Data Using Vector Quantisation and the Discrete Cosine Transform [ A ]. 2000 International Conference on Image Processing[ C ]. 2000,2:195- 198.

同被引文献74

引证文献12

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部