期刊文献+

A Note on the Laplacian Eigenvalues

Laplace特征值的一点注记(英文)
下载PDF
导出
摘要 This note determines the maximum spectral radius for the Laplacian matrix of a graph with e edges and n vertices. 确定具有n个顶点e条边的图的Laplace的最大谱半径.
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2004年第3期388-390,共3页 数学研究与评论(英文版)
基金 Supposed by Nation Natural Science Foundation of China(10371075)
关键词 Laplacian eigenvalue spectrum of graph. Laplace特征值 图谱
  • 相关文献

参考文献9

  • 1BERMAND J C, FOURNIER J C, VERGNAS M. et al. Problems Combinatores et Theorie des Graphes [M]. Coll. Int. C.N.R.S., No 260, Orsay, Orsay, 1976, C.N.R.S. Publ., 1978.
  • 2BRUALDI R A, HOFFMAN A J. On the spectralradius of (0,1) matrices [J]. Linear Algebra Appl., 1985, 65: 133-146.
  • 3CVETKOVIC D, ROWLINSON P. The largest eigenvalue of a graph: a survey [J]. Linear and Multilinear Algebra, 1990, 28: 3-33.
  • 4FRIEDLAND S. The maximum eigenvalue of (0,1) matrices with prescribed number of ones [J]. Linear Algebra Appl., 1985, 69: 33-69.
  • 5LI J S, PAN Y L. De Caen's inequality and bounds on the largest Laplacian eigenvalue of a graph [J]. Linear Algebra Appl., 2001, 328: 153-160.
  • 6MERRIS R. Laplacian matrices of graphs: a survey [J]. Linear Algebra Appl., 1994, 197/198:143-176.
  • 7ROWLINSON P. On the maximal index of graphs with a prescribed number of edges [J].Linear Algebra Appl., 1988, 110: 43-53.
  • 8STANLEY R P. A bound on the spectral radius of graphs with e edges [J]. Linear Algebra Appl., 1987, 87: 267-269.
  • 9ZHANG X D, LI J S. The two largest Laplacian eigenvalies of a tree [J]. J. Univ. Sci. Tech.China, 1998, 28: 513-518.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部