期刊文献+

可变精度的神经网络摄像机标定法 被引量:13

Variable precision camera calibration using neural network
下载PDF
导出
摘要 提出了一种提高摄像机标定精度的方法。通过摄像机径向畸变模型,建立根据畸变严重程度自动改变区域划分数目的方法,对远离图像中心畸变程度严重的区域,划分细密;而靠近图像中心畸变轻微的区域,划分粗疏。通过对摄像机径向畸变区域进行划分,并且对每个畸变区域的像素进行单独的处理,构造相应的神经网络,得到整个畸变区域的处理结果,并对于不同的划分结果进行比较分析。分析比较得出:采用可变精度的神经网络摄像机标定法,可以大幅度提高标定的精度,划分数目越多,标定的精度越高,实验中识别率最高可达到99.45%. A method is proposed to improve the precision of camera calibration. Based on the radial distortion model of a camera, the approach is presented, in which the partition number of distortion region can be adjusted automatically. In a region far from the image center, where distortion is high, the number of partition is big. While in the region near the image center, where the distortion is low, the number is small. Through the partition of the camera distortion regions and processing pixels in the corresponding regions, the neural network can be built. Then, the calibration result can be obtained. The processed results of the novel method were compared with different partitions. The conclusion is that the number of partition is bigger and the calibration precision is higher. The precision can reach 99.45% at the maximal partitions.
出处 《光学精密工程》 EI CAS CSCD 2004年第4期443-448,共6页 Optics and Precision Engineering
基金 国家教育部985基金资助项目部分内容
关键词 摄像机标定 神经网络 可变精度 camera calibration neural network variable precision
  • 相关文献

参考文献13

  • 1TSAI R Y. A Versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-shelf TV cameral and lenses[J]. IEEE Journal of Robotics and Automation, 1987,RA-3(4):322-344.
  • 2DAINIS A, JUBETS M. Accurate remote measurement of robot trajectory motion[J]. Conference on Robotics and Automation, 1985:92-99.
  • 3TSAI R Y. An efficient and accurate camera calibration technique for 3D machine vision[R]. CVPR, 1986:364-374.
  • 4WENG J, COHEN P, HERNIOU M. Camera calibration with distortion models and accuracy evaluateon[J]. IEEE Trans. PAMI, 1992, 14(10): 965-980.
  • 5MARTINS H A, BIRK J R, KELLEY R B. Camera models based on data from two calibration planes[J]. Computer Graphics Image Processing, 1981,17 (2):173-180.
  • 6MALIK M, MUDAR S, FLORENT C. Automatic camera calibration based on robot calibration[J]. IEEE Instrumentation and Measurement Technology Conference,1999,2:1278-1282.
  • 7JUN J,KIM C. Robust camera calibration using neural network[C]. IEEE Tencon, 1999:694-697.
  • 8赵清杰,孙增圻,兰丽.摄像机神经网络标定技术[J].控制与决策,2002,17(3):336-338. 被引量:23
  • 9AHMED M,HEMAVED E. A neural approach for single- and multi- image camera calibration[J]. IEEE Internaltional Conference on Image Processing, 1999,(3):925-929.
  • 10AHMED M T,HEMAVED E E,FARAG A A.Neurocalibration: a neural network that can tell camera calibration parameters[J]. IEEE the Proceedings of the Seventh IEEE International Conference on Computer Vision. 1999, 1(3):463-468.

二级参考文献10

  • 1Tsai R Y. Versatile camera calibration technique for high accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. IEEE J of Robotics and Automation,1987,3(4):323-344.
  • 2Chen C H. Neural networks in pattern recognition and their applications[M]. Singapore: World Scientific,1991.
  • 3Martins H A, Birk J R, Kelley R B. Camera models based on data from two calibration planes[J]. Computer Graphics Image Processing,1981,17(2):173-180.
  • 4Malik M, Mudar S, Florent C. Automatic cameracalibration based on robot calibration[A]. IEEE Instrumentation and Measurement Technology Conference[C].1999,2:1278-1282.
  • 5Tsai R Y,Proc IEEE Conf onComputer Vision and Patern Recognition,1986年,364页
  • 6Faig W,Photometric Eng Remote Sensing,1975年,41卷,12期,1479页
  • 7马颂德,计算机视觉,1998年
  • 8段发阶,张健新,叶声华.CCD 摄象机参数标定新技术[J].计量学报,1997,18(4):294-299. 被引量:27
  • 9牛海,马颖.小波-神经网络在辐射源识别中的应用研究[J].系统工程与电子技术,2002,24(5):55-57. 被引量:15
  • 10李世玲,李治,李合生.基于小波包能量特征的滚动轴承故障监测方法[J].系统仿真学报,2003,15(1):76-80. 被引量:60

共引文献98

同被引文献153

引证文献13

二级引证文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部