期刊文献+

基于方向分形维的高速公路车辆边缘检测研究 被引量:3

Research for Vehicle Edge Detection on Highway Based on Direction-Fractal Dimension
下载PDF
导出
摘要 基于图像的高速公路障碍物检测是实现汽车视觉导航的核心问题。在一个景物快速变化的视频图像中检测出目标物体是难度较大的图像分割和识别问题,而目前的各种分割算法也各有优劣。本文主要针对四川和重庆地区高速公路的特点,在分形维的基础上提出了方向分形维的算法,结合图像的灰度特征,用来提取车辆边缘并分割高速公路上的车辆。处理结果显示了方向分形维较强的分割能力和对特殊背景噪声的鲁棒性。本文针对分形算法的计算特点构造了相应的快速算法。经上路实验验证,算法实时性满足高速公路视觉导航系统的需要。 Obstacle detection is the key problem in vehicle vision navigation system on highway. To segment and recognize the object in changeable background is a very difficult problem. Based on the fractal dimension, this paper describes the direction-fractal dimension algorithm to segment the vehicle on highway in Sichuan province and Chongqing city. We give the material algorithm and quick algorithm about the direction-fractal dimension in this paper. The result shows that fractal and direction-fractal dimension has strong robust and strong ability of segmentation. Based on fractal dimension, the vision navigation system could detect the vehicle perfectly.
作者 周欣 黄席樾
出处 《信号处理》 CSCD 2004年第3期258-262,共5页 Journal of Signal Processing
基金 国家自然科学基金(编号:69674012)
关键词 计算机 图像处理 高速公路 车辆边缘检测 方向分形维 汽车视觉导航系统 vision navigation fractal dimension direction-fractal dimension gray property
  • 相关文献

参考文献15

二级参考文献32

  • 1薛东辉,朱耀庭,朱光喜,张正炳.基于尺度分维的图像边缘检测方法研究[J].华中理工大学学报,1996,24(8):1-3. 被引量:14
  • 2[1]Broggi A. Vision-based driving assistance[J]. IEEE Expert,Intelligent System & Their Application, 1998, 13(6): 22~23.
  • 3[2]Murphy R R. Sensor and information fusion for improved visionbased vehicle guidance[J]. IEEE Expert, Intelligent System & Their Application, 1998, 13(6): 49~56.
  • 4[3]Bertozzi M, Broggi A. GOLD: A parallel real-time stereo vision system for generic obstacle and lane detection [J]. IEEE Transactions on Image Processing, 1998,7(1):62~81.
  • 5[4]Morizet-Mahoudeaux P. On-board and real-time expert control [J]. IEEE Expert, Intelligent System & Their Application,1996,11(4): 71~81.
  • 6[5]Thorpe C, Hebert M H. Vision and navigation for the carnegiemellon navlab[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(3): 362~373.
  • 7[6]Turk M A, Morgenhaler D G. VITS-A vision system for autonomous land vehicle navigation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(3): 342~361.
  • 8[7]Kuan D, Phipps G. Autonomous robotic vehicle road following [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(5): 648~658.
  • 9[8]Giachetti A, Campani M. The use of optical flow for road navigation[J]. IEEE Transactions on Robotics and Automation,1998, 14(1): 34~48.
  • 10[9]Kanatani K, Watanabe K. Reconstruction of 3-D road geometry from images for autonomous land vehicles [ J ]. IEEE Transactions on Robotics and Automation, 1990, 6 (1): 127 ~132.

共引文献79

同被引文献13

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部