期刊文献+

温室环境的支持向量机回归建模 被引量:30

SVM Regression Modeling for Greenhouse Environment
下载PDF
导出
摘要 温室气候是一个复杂的动态系统 ,传统的建模方法很难建立精确有效的温室气候模型。本文引入一种支持向量机回归建模方法来建立温室气候模型 ,这种方法根据历史数据建立气候模型 ,并用当前数据检验修正模型。对实际温室数据进行了建模实验 ,取得了较好的效果。 Greenhouse weather is a complex dynamic system, whose mathematical model usually is not precious and even invalid if built by the classical modeling methods. Therefore, a modeling method by using support vector machines (SVM) regression is presented. The models of greenhouse weather were established according to the history data, and then were modified and corrected on-line using the current data. A model for a practical greenhouse was built by the method and the results from the model were tested. The method was proved to be good in modeling of a greenhouse.
作者 王定成
出处 《农业机械学报》 EI CAS CSCD 北大核心 2004年第5期106-109,共4页 Transactions of the Chinese Society for Agricultural Machinery
基金 北京市"十五"攻关项目 (项目编号 :H0 2 0 72 0 0 3 0 5 3 0 ) 国家自然科学基金资助项目 (项目编号 :60 3 740 3 0 )
关键词 温室环境 支持向量机 回归建模 数学模型 动态系统 Greenhouse, Support vector machines, Regression, Mathematical model
  • 相关文献

参考文献7

  • 1Chalabi Z S, Bailey B J, Wilkinson D J. A real-time optimal control, algorithm for greenhouse heating. Computers and Electronics in Agriculture, 1996, 15: 1~13
  • 2Arvanitis K G, Paraskevopoulos P N, Vernardos A A. Mutirate adaptive temperature control of greenhouses. Computers and Electronics in Agriculture, 2003,3:303~320
  • 3Tap R F. Economics-based optimal control of greenhouse tomato crop production: [PhD thesis]. Wageningen Agricultural University,1998.
  • 4Pohlheim H, Heibner A. Optimal control of greenhouse climate using genetic algorithms. 2nd International Conference Algorithms. Technical University of Brno, Czech Republik, 1996.
  • 5Vapnik V. The nature of statistical learning theory. New York: Springer Press, 1999.
  • 6Müller K R, Smola A J, Rtsch G, et al. Predicting time series with support vector machines. In: Gerstner W, Germond A, Hasler M, et al, eds. Proc. of-ICANN'97, Springer Lecture Notes in Computer Science. New York: Springer Press, 1997. 999~1004
  • 7Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers. In: Haussler D, ed. 5th Annual ACM Workshop on COLT. Pittsburgh: Association for Computer Machinery Press,1992.144~152

同被引文献395

引证文献30

二级引证文献212

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部