期刊文献+

基于蚁群算法的PID参数优化 被引量:51

Research and realization on parameters optimization of PID controller based on ant colony algorithm
下载PDF
导出
摘要 针对传统的PID控制器参数多采用试验加试凑的方式由人工进行优化,提出了一种新型的基于蚁群算法的PID参数优化策略.蚁群算法是近几年优化领域中新出现的一种仿生进化算法,该算法采用分布式并行计算机制.在简要介绍蚁群算法基本思想的基础上,推导了蚁群算法PID参数优化方法,并给出了新算法的具体实现步骤,最后将该优化方案应用于某型高精度飞行仿真伺服系统.仿真应用研究表明,该PID参数优化策略具有很强的灵活性、适应性和鲁棒性,进而验证了该方案的可行性和有效性. In light of traditional PID controller parameters optimization with manual cut-and-try method, a novel kind of PID parameters optimization strategy based on ACA(Ant Colony Algorithm) was proposed. ACA is a new category of bionic algorithm for optimization problems. Parallel computation mechanism is adopted in this algorithm. On the basis of brief introduction of ACA, a method for setting PID controller parameters using ACA was derived. A detailed realizing process of the new algorithm was also presented. In the end, this new PID parameters optimization scheme was applied to some high precision flight simulation servo system. The simulation results show that the ACA based PID parameters optimization has excellent flexibility, adaptability and robustness. And the feasibility and effectiveness of this scheme is further verified.
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2004年第5期97-100,共4页 Engineering Journal of Wuhan University
基金 国家航空科学基金资助项目(编号:01C52015).
关键词 蚁群算法 信息素 PID 参数优化 ant colony algorithm(ACA) pheromone PID parameters optimization
  • 相关文献

参考文献10

  • 1Alberto Colorni, Dorigo Marco, Vittorio Maniezzo,et al. Distributed optimization by ant colonies[A]. In: Proceedings of European Conference on Artificial Life [C]. Paris, France, 1991:134-142.
  • 2Katja Verbeeck, Ann Nowe. Colonies of learning automata[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 2002, 32(6): 772-780.
  • 3赵学峰.基于蚁群算法的一类扩展型TSP研究[J].系统工程,2003,21(1):17-21. 被引量:14
  • 4James Montgomery, Marcus Randall. Anti-pheromone as a tool for better exploration of search space[A]. In: Proceedings of Third International Workshop ANTS[C]. Brussels, Belgium, 2002: 100-110.
  • 5王颖,谢剑英.一种基于改进蚁群算法的多点路由算法[J].系统工程与电子技术,2001,23(8):98-101. 被引量:11
  • 6段海滨,王道波.一种快速全局优化的改进蚁群算法及仿真[J].信息与控制,2004,33(2):241-244. 被引量:57
  • 7马良,姚俭,范炳全.蚂蚁算法在交通配流中的应用[J].科技通报,2003,19(5):377-380. 被引量:10
  • 8Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour[J]. NATURE, 2000, 406(6): 39-42.
  • 9胡寿松.自动控制原理[M].北京:科学出版社,2002..
  • 10Dorigo Macro, Vittorio Maniezzo, Alberto Colorni. The ant system: optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 1996, 26(1): 29-41.

二级参考文献36

  • 1马良.中国144城市TSP的蚂蚁搜索算法[J].计算机应用研究,2000,17(1):36-37.
  • 2潘威海 马良.蚂蚁算法在城市高密度光纤铺设优化中的应用[A]..2001中国控制与决策学术年会论文集[C].哈尔滨:东北大学出版社,2001.404~408.
  • 3Colorni A, Dorigo M, Maffioli F, et al. Heuristics From Nature for Hard Combinatorial Optimization Problems[J]. International Transactions in Operational Research, 1996, 3 (1): 1-21.
  • 4Dorigo M, Maniezzo V, Colomi A. Ant system: optimization by a colony of cooperating agents[J]. IEEE Trans on Systems, Man and Cybernetics, 1996, 26 (1): 29-41.
  • 5Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behavionr[J]. Nature, 2000, 406 (6791): 39-42.
  • 6Ma Liang, Yao Jian. A new algorithm for Integer programming Problem[A]. Proc. of 2001 Int Conf on Management Science & Engineering[C]. Harbin Institute of Technology Press, 2001. 534-537.
  • 7Colorni A, Dorigo M, Maniezzo V, et al. Distributed optimization by ant colonies [ A]. Proceedings of ECAL91 ( European Conference on Artificial Life) [ C ]. Paris, France : 1991.134 - 142.
  • 8Dorigo M, Maniezzo V, Colomi A. The ant system:optimization by a colony of cooperating agents [ J]. IEEE Transactions on Systems, Man, and Cybernetics - Part B, 1996, 26( 1 ) : 29-41.
  • 9Verbeeck K, Nowe A. Colonies of learning automata [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 2002,32(6) : 772 -780.
  • 10Montgomery J, Randall M. Anti-pheromone as a tool for better exploration of search space [A]. Proceedings of Third International Workshop ANTS [C]. Brussels, Belgium:2002. 100 - 110.

共引文献93

同被引文献330

引证文献51

二级引证文献202

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部