期刊文献+

组合导航智能信息融合自适应滤波算法分析 被引量:9

Analysis of adaptive Kalman filter based on intelligent informationfusion techniques in integrated navigation system
下载PDF
导出
摘要 针对当前自适应组合导航系统算法的研究趋势,总结了卡尔曼滤波技术的缺陷和利用智能融合技术提高滤波器性能的设计思想。对模糊控制自适应算法(FIR AKF)、神经网络自适应算法(NN AKF)和自适应神经网络模糊推理自适应算法(ANFIS AKF)进行了分析。着重研究FIR AKF采用滤波器新息序列和外系统状态的模糊控制器关键的模糊规则设计问题;分析NN AKF在组合导航系统模型调整、故障检测和隔离中的应用方法,并给出ANFIS AKF利用神经网络自动生成推理规则和建立自适应组合导航系统的基本方法。 The adaptive Kalman filtering (AKF) based on intelligent information fusion algorithm has currently became an effective approach to enhance the integrated navigation system's robustness and accuracy. Three main intelligent adaptive algorithms, i.e. fuzzy inference reasoning based AKF (FIR-AKF), neural network based AKF (NN-AKF) and adaptive neural network-fuzzy inference system based AKF (ANFIS-AKF), are chosen specially and studied. The design rules of fuzzy controller, the key problem in FIR-AKF, are in detail analyzed respectively based on two aspects, i.e., the innovation sequence of Kalman filter and the working states of external reference system. The NN-AKF approaches can be used to settle different limitations of traditional Kalman filtering in model modification, fault diagnoses and fault isolation, and their valid applications are provided. Using ANFIS-AKF to generate the fuzzy inference rules in an adaptive INS is the final concern of this paper, and the basic design procedures are given.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2004年第10期1449-1452,1459,共5页 Systems Engineering and Electronics
基金 国家自然科学基金资助课题(40125013 40376011)
关键词 组合导航 自适应卡尔曼滤波 神经网络 模糊控制 自适应神经网络模糊推理 integrated navigation adaptive Kalman filtering neural network fuzzy control adaptive neural network-fuzzy inference
  • 相关文献

参考文献13

  • 1Jazwinski A H.Adaptive Filtering[J].Automation,1969,5:975-985.
  • 2Sasiadek J Z,Wang Q,Zaremba M B.Fuzzy Adaptive Kalman Filtering for INS/GPS Data Fusion[C].The 15th IEEE Int.Symp.on Intelligent Control(ISIC-2000),Patras,Greece,2000.
  • 3Kyungho CHO,Byungha Ann,Hanheok Ko.Intelligent Adaptive Gain Adjustment and ErrorCompensation for Improved Tracking Performance [J].IEICE Trans.on INF &SYST.,2000,(11):E83-D,1952-1959.
  • 4Setven R,Swanson.A Fuzzy Navigational State Estimator for GPS/INSIntergration[J].0-7803-4330-1/98 1998 IEEE.
  • 5Atherton D P,Gul E,Kountzeris A,et al.Tracking Multiple Targets Using Parallel Processing[J].Control Theory and Applications,IEE Proceedings D,1990.
  • 6Sasiaded J Z.Sensor Fusion[J].Annual Reviews in Congtrol 2002,26:203-228.
  • 7Antonio Tiano.Application of Interval and Fuzzy Techniques to Integrated Navigation[J].0-7803-7078-3-01,IEEE 2001.
  • 8David McNeil Mayhew.Multi-Rate Sensor Fusion for GPS Navigation Using Kalman Filter[D].Virginia Polytechnic Institute and State University,1999.40-47.
  • 9Napolitano M R.Neural Network-Based Scheme for Sensor Failure Detection,Identification,and Accommodation[J].Journal of Guidance,Control and Dynamics,1995.
  • 10杨莉,汪叔华.采用BP神经网络的惯导初始对准系统[J].南京航空航天大学学报,1996,28(4):487-491. 被引量:29

二级参考文献6

  • 1张立明,人工神经网络的模型及其应用,1992年
  • 2团体著者,离散时间系统的递推估计与随机控制,1980年
  • 3袁信,导航系统,1993年
  • 4孙增圻,智能控制理论与技术,1997年
  • 5杨莉,南京航空航天大学学报,1996年,28卷,4期
  • 6赵鲁阳.计算描述函数的一个通用算法[J].信息与控制,1998,27(5):359-364. 被引量:3

共引文献41

同被引文献71

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部