期刊文献+

多粒子群协同优化算法 被引量:398

Particle Swarms Cooperative Optimizer
原文传递
导出
摘要 提出一种多粒子群协同优化(PSCO)方法.PSCO是2层结构:底层用多个粒子群相互独立地搜索解空间以扩大搜索范围;上层用1个粒子群追逐当前全局最优解以加快算法收敛.这些粒子群含的粒子数以及粒子状态更新策略不要求相同.为改善粒子群容易陷入局部极小的弱点,提出扰动策略,当1个粒子群的当前全局最优解未更新时间大于扰动因子时,重置粒子的速度,迫使粒子群摆脱局部极小.用Rosenbrock函数等3种基准函数做优化实验表明,PSCO性能优于经典PSO,FPSO和HPSO等算法. A particle swarms cooperative optimizer (PSCO) algorithm with two layers framework is proposed. Particle swarms are employed to search best solution in the solution space independently in the bottom layer, and a single swarm is employed in top layer. Sates of the particles of the top swarm are updated based on global best solution has been searched by all the particle swarms both in bottom and top layer. Both the particle numbers of the swarms and updating schemes of particle states are independence. A disturbance factor is added to a particle swarm optimizer (PSO) for improving PSO algorithms' performance. When the time of the current global best solution having not been updated is longer than the disturbance factor, the particles' velocities will be reset in order to force swarms getting out of locally minimizers. Three benchmark functions are used in experiments, and the experimental results show that the performances of PSCO are superior to that of classical PSO and fuzzy PSO and hybrid PSO.
作者 李爱国
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2004年第5期923-925,共3页 Journal of Fudan University:Natural Science
基金 陕西省科学技术发展计划"十五"攻关资助项目(2000K08 G12)
关键词 粒子群 全局最优解 k函数 相互独立 收敛 扰动 因子 局部极小 算法 更新策略 evolutionary computation optimization particle swarm optimizer (PSO)
  • 相关文献

参考文献8

  • 1Kennedy J, Eberhart R. Particle swarm optimization [A]. Proc of Int'l Conf on Neural Networks [C]. Piscataway: IEEE Press, 1995. 1942-1948.
  • 2Eberhart R, Kennedy J. A new optimizer using particle swarm theory [A]. Proc of Int'l Symposium on Micro Machine and Human Science [C]. Piscataway: IEEE Service Center, 1995. 39-43.
  • 3Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [A].In: Furuhashi T,Mckay B,eds. Proc Congress on Evolutionary Computation [C]. Piscataway: IEEE Press, 2001.
  • 4Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimiser with breeding and subpopulations [A]. In: Spector L,eds. Proc of Genetic and Evolutionary Computation Conference [C]. San Fransisco: Morgan Kaufmann Publishers Inc, 2001. 469-476.
  • 5Carlisle A, Dozier G. Adapting particle swarm optimization to dynamic environments [A]. In: Arabnia H R,eds. Proc of Int'l Conf on Artificial Intelligence [C]. Las Vegas: CSREA Press, 2000. 429-434.
  • 6Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems [A]. In: Panda B,eds. Proc of ACM Symposium on Applied Computing [C]. Boston: ACM Press, 2002. 603-607.
  • 7Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73.
  • 8李爱国,覃征,鲍复民,贺升平.粒子群优化算法[J].计算机工程与应用,2002,38(21):1-3. 被引量:304

二级参考文献1

共引文献303

同被引文献3088

引证文献398

二级引证文献2660

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部