摘要
引入了RL型蕴涵与正则RL型蕴涵的概念,系统地讨论了基于RL型蕴涵的三I算法、三IMT算法及其还原性,得到了这些算法的一般表达式,指出基于正则RL型蕴涵的三I算法与三IMT算法的表达式具有对偶形式;证明了当P表示条件{B(y)|y∈Y} {A(x)|x∈X}时,基于RL型蕴涵的三I算法为P 还原算法,当P表示条件{A(x)|x∈X} {B(y)|y∈Y}时,基于RL型蕴涵的三IMT算法为P 还原算法.
The concepts of RL-type implication and regular RL-type implication are introduced. Triple(-I) algorithm and Triple-I MT algorithm based on RL-type implication and their reductor are investigated. The general representing expression of the above these algorithm are given, and it is pointed out that the representing expression of Triple-I algorithm and the one of Triple-I MT algorithm based on regular RL-type implication are dual. It is proved that Triple-I algorithm and Triple-I MT algorithm based on RL-type implication be P-reductive algorithm respectively ,there P representatives {B(y)|y∈Y}{A(x)|x∈X} or {A(x)|x∈X}{B(y)|y∈Y} respectively.
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2004年第3期7-11,共5页
Journal of Shaanxi Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(19831040)
关键词
三I算法
正则
蕴涵
Fuzzy推理
表示
对偶形式
一般表达式
RL
IMT
条件
Fuzzy reasoning
RL-type implication
regular RL-type implication
Triple-I algorithm
Triple-I MT algorithm
reductor
dual form