摘要
Based on a modified Leenheer DOM fractionation scheme, fractionation of DOM from the paddy soil was conducted by using XAD-8 resin into hydrophobic bases(HOB), hydrophobic acids(HOA), acid-insoluble matter(AIM), hydrophobic neutrals(HON) and hydrophilic matter(HIM). In total carbon content of DOM, 35.32% were the HIM and only 0.73% the HOB. However, HOA and AIM altogether occupied 53.45%, while the HON fraction represented 10%. The sorption experiments were conducted to determine the sorption capacity of pyrene on unfractionated DOM and its fractions. Elemental analysis, 1H-NMR and FTIR spectra were carried out on unfractionated DOM and its fractions to examine the relationship between the structure of DOM and partition coefficients(K oc). The results showed that HON had a greater affinity for binding pyrene than other fractions. While HON was characterized by large long-chain alkylate (aliphatic structure). AIM exhibited relative higher K oc values than HOA and HIM, due to much aromatic structure in AIM, while the high content of carboxylic groups of HOA and HIM depressed their binding capacity. This study demonstrated HON is a key subcomponents of DOM in binding of pyrene, in other words, aliphalic structure in DOM play an important role in binding of pyrene.
Based on a modified Leenheer DOM fractionation scheme, fractionation of DOM from the paddy soil was conducted by using XAD-8 resin into hydrophobic bases(HOB), hydrophobic acids(HOA), acid-insoluble matter(AIM), hydrophobic neutrals(HON) and hydrophilic matter(HIM). In total carbon content of DOM, 35.32% were the HIM and only 0.73% the HOB. However, HOA and AIM altogether occupied 53.45%, while the HON fraction represented 10%. The sorption experiments were conducted to determine the sorption capacity of pyrene on unfractionated DOM and its fractions. Elemental analysis, 1H-NMR and FTIR spectra were carried out on unfractionated DOM and its fractions to examine the relationship between the structure of DOM and partition coefficients(K oc). The results showed that HON had a greater affinity for binding pyrene than other fractions. While HON was characterized by large long-chain alkylate (aliphatic structure). AIM exhibited relative higher K oc values than HOA and HIM, due to much aromatic structure in AIM, while the high content of carboxylic groups of HOA and HIM depressed their binding capacity. This study demonstrated HON is a key subcomponents of DOM in binding of pyrene, in other words, aliphalic structure in DOM play an important role in binding of pyrene.
基金
TheNationalNaturalScienceFoundationofChina(No .2 0 1 770 0 9)