摘要
针对转子振动时间序列中异常数据的检测问题,采用欧氏距离进行匹配计算,在实数域实现了负向选择算法。通过对抗体库中元素增加一个描述其覆盖半径的参数,可更有效地发挥每个抗体元素的检测作用,显著提高了抗体库对异常数据集合的覆盖范围。计算结果表明,这种算法可有效地检测出时间序列中的异常值,且抗体库中元素数量少而可望用于信号的在线监测。
For the anomaly detection in the vibration time series of the rotor system, a real-valued negative selection algorithm based on Euclidean distance has been implemented. By means of adding the corresponding coverage radius to each antibody elements, the detection efficiency of each antibody element is increased. The coverage scope of the antibody set is significantly enlarged for the anomaly data set. The calculation results indicate that the algorithm can efficiently detect the anomaly in time series data. Moreover, the number of detectors in antibody set is less enough for potential application in online signal monitoring.
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2004年第10期30-34,共5页
Journal of Mechanical Engineering
基金
国家重点基础研究973资助项目(G19990330)
关键词
人工免疫系统
负向选择算法
时间序列
异常检测
欧氏距离
Artificial immune systemNegative selection algorithm Time series Anomaly detection Euclidean distance