期刊文献+

应用人工神经网络模型预测Ti-10V-2Fe-3Al合金的力学性能 被引量:30

Artificial Neural Network Model for the Prediction of Mechanical Properties of Ti-10V-2Fe-3Al Titanium Alloy
下载PDF
导出
摘要 采用人工神经网络方法建立了Ti-10V-2Fe-3Al合金机械性能预测的神经网络模型。模型的输入参数包括变形温度、变形程度、固溶温度、时效温度等热加工工艺参数和热处理制度。模型的输出为钛合金最重要的5个机械性能指标,即抗拉强度、屈服强度、延伸率、断面收缩率和断裂韧性。与传统回归拟合公式相比,该模型具有容错性好、通用性强等优点。该模型可以预测Ti-10V-2Fe-3Al合金在不同热加工工艺参数和热处理制度下的机械性能,也可以用于优化热加工参数和热处理制度。 An artificial neural network (ANN) model is proposed to predict mechanical properties of Ti-10V-2Fe-3Al titanium alloys. The input parameters of the neural network (NN) model are deformation temperature, degree of reduction, cooling rate, solution temperature and aging temperature. The outputs of the NN model are five most important mechanical properties namely ultimate tensile strength, tensile yield strength, elongation, reduction of area, and fracture toughness. Extensive experiments for correlating forging technology to mechanical properties were conducted in Ti-10V-2Fe-3Al alloy to train the NN. Compared to the traditional regression method, the ANN model has a better compatibility and adaptability. The model can be used for the prediction of properties of Ti-10V-2Fe-3Al alloy as functions of processing parameters and heat treatment cycle. It can also be used for the optimization of the processing and heat treatment parameters.
机构地区 西北工业大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2004年第10期1041-1044,共4页 Rare Metal Materials and Engineering
关键词 人工神经网络 TI-10V-2FE-3AL合金 机械性能 artificial neural network Ti-10V-2Fe-3Al alloy mechanical property
  • 相关文献

参考文献16

  • 1赵永庆.高温钛合金研究[J].钛工业进展,2001,18(1):33-39. 被引量:99
  • 2Froes F H, Laplan I L. Titanium Science and Technology[M].San Diego: TMS Minerals, Metals, Materials Press, 1992: 77~88
  • 3Evans W J. Mater Sci Eng A[J], 1998, 243 (1~2): 89~96
  • 4Ankem, Greene C A. Mater Sci Engi[J], 1999, A63:127~131
  • 5姚泽坤,郭鸿镇,苏祖武,孙开本,徐永超,曹晓卿.热力参数对α+β两相钛合金再结晶百分数和力学性能的影响[J].稀有金属材料与工程,2000,29(5):340-343. 被引量:32
  • 6朱知寿,钟鸣,储俊鹏,王庆如,全桂彝,王韦琪.β-21S钛合金薄板材的热处理工艺和冷成形性能研究[J].稀有金属材料与工程,2000,29(1):50-52. 被引量:9
  • 7Jiao Licheng(焦李成). The Theory of Neural Network System (神经网络系统理论)[M]. Xi'an: Xi'an Dianzhi Science and Technology University Press, 1995:79
  • 8Jan K, Roman K. J Mater Proc Tech[J], 2002, 127:115~121
  • 9Calcaterra S, Campana G, Tomesani L. J Mater Proc Tech[J],2000, 104:74~80
  • 10Song R G, Zhang Q Z. Mater Sci Engi[J], 2001, C17: 133~137

二级参考文献29

  • 1苏祖武,姚泽坤,郭鸿镇,刘建超,刘建宇,崔健,刘果青,姜明,应志毅.TC11钛合金双性能盘研究[J].金属学报,1996,32(4):377-381. 被引量:13
  • 2马济民 曹春晓.航空用钛合金的新进展[J].稀有金属,1997,21:1-9.
  • 3胡清熊 刘振球 魏寿庸.宝鸡钛的35年[J].金属学报,1999,35:15-21.
  • 4毛小南 周廉 等.TIC颗粒增强钛基复合材料的界面反应动力学[J].金属学报,1999,35(1):339-343.
  • 5姚泽坤,热加工工艺,1995年,1卷,6页
  • 6苏祖武,金属学报,1991年,27卷,5期,299页
  • 7Boyer R R.Mater Sci Eng,1996,A213:103-107
  • 8Giary K.Advanced Mater Proc,1993,(9):7
  • 9Boyer R R. Proc. of 9th World Conference on Ti, 1999, Russia(in press)
  • 10Zhou Y G, Zeng W. D, Yu H Q.Mater Sci. Eng, 1996,A211:58-62

共引文献137

同被引文献288

引证文献30

二级引证文献169

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部