摘要
在主、客观世界普遍存在的不确定性中,随机性和模糊性是最重要的两种形式.研究了随机性和模糊性之间的关联性,统一用熵作为客观事物和主观认知中不确定状态的度量,用超熵来度量不确定状态的变化,并利用熵和超熵进一步研究了混沌、分形和复杂网络中的不确定性,以及由此带来的种种进化和变异,为实现不确定性人工智能找到了一种简单、有效的形式化方法,也为包括形象思维在内的不确定性思维的自动化打下了基础.不确定性人工智能是人工智能进入21世纪的新发展.这个由多学科交叉渗透构成的新学科,必将使得机器能够具备人脑一样的不确定性信息和知识的表示能力、处理能力和思维能力.
Uncertainty exists widely in the subjective and objective world. In all kinds of uncertainty, randomness and fuzziness are the most important and fundamental. The relationship between randomness and fuzziness is discussed. Uncertain states and their changes can be measured by entropy and hyper-entropy respectively. Taken advantage of entropy and hyper-entropy, the uncertainty of chaos, fractal and complex networks by their various evolution and differentiation are further studied. A simple and effective way is proposed to simulate the uncertainty by means of knowledge representation which provides a basis for the automation of both logic and image thinking with uncertainty. The AI (artificial intelligence) with uncertainty is a new cross-discipline, which covers computer science, physics, mathematics, brain science, psychology, cognitive science, biology and philosophy, and results in the automation of representation, process and thinking for uncertain information and knowledge.
出处
《软件学报》
EI
CSCD
北大核心
2004年第11期1583-1594,共12页
Journal of Software
基金
国家自然科学基金~~