期刊文献+

Zr-Al-Ni-Cu(Nb,Ti)大块非晶玻璃转变的动力学性质 被引量:9

Glass transition kinetic property of novel bulk Zr-Al-Ni-Cu (Nb,Ti) amorphous alloy
原文传递
导出
摘要 以Zr Al Ni Cu(Nb ,Ti)大块非晶合金差示扫描量热分析实验为基础 ,利用Lasocka方程、Kissinger方程及Vogel Fulcher Tamman(VFT)方程对其玻璃转变的动力学性质从不同方面进行了研究 .分析结果表明 :玻璃转变表观激活能越小 ,则晶化转变激活能越大 ,表现出相反的难易程度 ,且玻璃转变表观激活能数值远较传统非晶要小 ,验证了大块非晶合金独特的结构特点及玻璃形成能力 (GFA)强的原因 .利用VFT方程对玻璃转变弛豫时间与升温速度的VFT曲线进行了拟合 ,所算得的玻璃脆性参数m均在 30左右 ,反映了Zr Al Ni Cu(Nb ,Ti)非晶合金强的脆性属性 .玻璃转变处Lasocka关系的B值、原子表观激活能及玻璃脆性参数均反映了相同的GFA大小趋势 ,从不同方面进一步揭示了非晶合金玻璃转变区间的动力学行为与GFA之间的密切联系 。 The kinetic property during the glass transition process of Zr_Al_Ni_Cu (Nb,Ti) amorphous alloys was systematically investigated by differential scanning calorimetry method. The activation energy (ΔE) at the glass transition temperature was much smaller than tradition amorphous alloys and have different magnitude compared to ΔE value at T x. These reveal that the bulk amorphous alloys show special structure characteristics and that is the reason of its big glass_forming ability. The Vogel_Fulcher_Tammann fits to the experimental data are given by the full curves and the fragility parameter m value was calculated to be about 30, reflecting its “strong' liquid property in deep_undercooled region. The B value of Lasocka function,atom activation energy and glass fragility parameter reveal a close relationship between kinetic behavior at glass transition and the glass_forming ability. So it could be used as an important judgment for glass_forming ability.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2004年第11期3839-3844,共6页 Acta Physica Sinica
基金 安徽省自然科学基金 (批准号 :0 3 0 462 0 2 )资助的课题~~
关键词 GFA 激活能 大块非晶合金 脆性 玻璃转变 玻璃形成能力 晶化 动力学性质 原子 动力学行为 glass transition,glass-forming ability,activation energy,fragility parameter
  • 相关文献

参考文献17

  • 1[1]Inoue A, Zhang T and Masumoto T 1989 Mater. Trans. JIM 30722
  • 2[2]Inoue A and Masumoto T 1993 Mater. Sci. Eng. A 173 1
  • 3[3]Inoue A et al 1992 Mater. Trans. JIM 33 937
  • 4[4]Inoue A et al 1993 Mater. Trans. JIM 34 1234
  • 5[5]Peker A and Johnson W L 1993 Appl. Phys. Lett. 63 2342
  • 6[6]Zhang Z and Chen L R 2003 Chin. Phys. 12 79
  • 7[7]Wang W H, Li L L, Pan M Xand Wang R J2001 Phys. Rev. B 63 52204
  • 8[9]Busch R,Bakke E and Johnson W L1998 Acta Mater.46 4725
  • 9[11]Angell C A 1995 Science 267 1924
  • 10[12]Bonmer R, Ngai K L, Angell C A and Plazek D J 1993 J. Chem.Phys. 99 4201

同被引文献143

引证文献9

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部