期刊文献+

一种解决组合优化问题的量子遗传算法QGA 被引量:50

A Quantum Genetic Algorithm to Solve Combinatorial Optimization Problem
下载PDF
导出
摘要 本文在量子变异的基础上 ,提出了一种解决组合优化问题的量子遗传算法QGA ,它融合了遗传量子算法GQA和经典遗传算法的优点 ,只用一个个体就可在很短的时间内搜索到最优解 ,并针对一个典型的组合优化问题——— 0 / 1背包问题进行了对比实验 ,实验结果表明本文所提出的量子遗传算法QGA优于传统遗传算法和遗传量子算法GQA . Based on quantum mutation, a quantum genetic algorithm (QGA) to solve combinatorial optimization problem is proposed.It has good features of genetic quantum algorithm (GQA) and traditional genetic algorithm,which can obtain the best solution with one chromosome in a short time.Comparing experiments have been conducted on a typical combinatorial optimization problem——0/1 knapsack problem.Experimental results have shown that the proposed quantum genetic algorithm is superior to genetic quantum algorithm and traditional genetic algorithm on performance.
出处 《电子学报》 EI CAS CSCD 北大核心 2004年第11期1855-1858,共4页 Acta Electronica Sinica
基金 中科院创新基金 (No .CXJJ- 91 ) 国家 863计划 (No.2 0 0 2AA1 2 1 0 66)
关键词 量子计算 遗传算法 遗传量子算法 量子遗传算法 quantum computation genetic algorithm genetic quantum algorithm quantum genetic algorithm
  • 相关文献

参考文献5

  • 1John Preskill.Lecture Notes for Physics 229:Quantum Information and Computation [C].USA:California Institute of Technology,1998.
  • 2DiVincenzo D P.Two-bit gates are universal for quantum computation[J].Phys,Rev.A,1995,51(2):1015-1022.
  • 3Narayanan A,Moore M.Quantum inspired genetic algorithms[A].Proceedings of the 1996 IEEE International Conference on Evolutionary Computation (ICEC96) [C].USA:IEEE Press,1996.61-66.
  • 4Kuk-Hyun Han,Jong-Hwan Kim.Genetic quantum algorithm and its application to combinatorial optimization problem[A].Proceedings of the 2000 IEEE Congress on Evolutionary Computation[C].USA:IEEE Press,2000.1354-1360.
  • 5Kuk-Hyun Han,Kui-Hong Park,Ci-Ho Lee,Jong-Hwan Kim.Parallel quantum-inspired genetic algorithm for combinatorial optimization problem[A].Proceedings of the 2001 Congress on Evolutionary Computation[C].USA:IEEE Press,2001.1422-1429.

共引文献1

同被引文献428

引证文献50

二级引证文献290

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部