期刊文献+

分数(g,f)-因子、分数(g,f)-覆盖图和分数(g,f)-消去图

Fractional (g,f)-Factors, Fractional (g,f)-Covered Graphs andFractional (g,f)-Deleted Graphs
下载PDF
导出
摘要  给出了一个图有分数(g,f)-因子的两个充分条件,并给出了一个图是分数(g,f)-覆盖图和分数(g,f)-消去图的两个充分必要条件. Two sufficient conditions are given for a graph to have a fractional (g,f)-factor. Two necessary and sufficient conditions for a graph to be fractional (g,f)-covered and fractional (g,f)-deleted are given.
作者 周思中
出处 《甘肃科学学报》 2004年第4期8-10,共3页 Journal of Gansu Sciences
基金 江苏科技大学青年科研基金项目(2004SL001J)
关键词 分数(G F)-因子 分数(g f)-覆盖图 分数(g f)-消去图 graph fractional (g,f)-factor fractiona (g,f)-covered graph fractional (g,f)-deleted graph
  • 相关文献

参考文献4

二级参考文献13

  • 1刘桂真.图的[a,b]-因子[J].纯粹数学与应用数学,1994,10:1-6.
  • 2刘桂真,纯粹数学与应用数学,1994年,10卷,1页
  • 3Pulleyblank,w.R.,FractionalMatchings and the Edmonds-Gallai Theorem, Disc. Appl. Math.16,(1987),51-58.
  • 4Edward R.Scheinerman and Daniel H.Ullman,Fractional Graph Theory, John Wiley andSonc,Inc. New York (1997).
  • 5Liu Guizhen, On (g, f)-Covered Graphs. Atca. Math. Scientia.8, (1988),2,181-184.
  • 6Anstee,R.R.,An Algorithmic Proof Tutte's f-Factor Theorem, J.Algorithms6,(1985),112-131.
  • 7Pulleyblank.w.R. Fractional Matckings and the Edmonds-Gallai Theorem[J]. Disc. Appl. Math. , 1987,16:51-58.
  • 8Edwark R. Scheinerman and Daniel H. Ullman. Fractional Graph Theory[M]. New York:John Wiley and Sonc,Inc. , 1997.
  • 9Yang Jingbo. Fractional (g,f)- Covered Graph and Fractional (g,f)- Deleted Graph[A]. Proceedings of the Sixth National Conference of Operation Research Society of China[C]. 2000,451-454.
  • 10Yang Jingbo, Ma Yinghong, Liu Guizhen. Fractional (g, f)- Factor of Graphs[J]. Acta Appl. Math. JUC.2001,16(4) :385-390.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部