期刊文献+

求解时滞微分方程组的Rosenbrock方法的GP-稳定性 被引量:7

GP-Stability of Rosenbrock Methods for System of Delay Differential Equation
下载PDF
导出
摘要  讨论了求解延时微分方程组的Rosenbrock方法的数值稳定性,分析了求解线性试验方程组的Rosenbrock方法的稳定性态。 The stability analysis of the Rosenbrock method for the numerical solutions of system of delay differential equations was studied. The stability behavior of Rosenbrock method was analyzed for the solutions of linear test equation. The result that the Rosenbrock method is GP_stable if and only if it is A_stable is obtained.
出处 《应用数学和力学》 EI CSCD 北大核心 2004年第12期1285-1291,共7页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10171067)
关键词 延时微分方程 ROSENBROCK方法 GP-稳定性 delay differential equation Rosenbrock method GP_stability
  • 相关文献

参考文献2

二级参考文献14

  • 1杨彪,匡蛟勋.延时微分方程组的隐式RungeKutta方法的P_mL稳定性(英文)[J].上海师范大学学报(自然科学版),1999,28(1):8-15. 被引量:1
  • 2T. Koto.A stability property ofA-stable natural Runge-Kutta methods for systems of delay differential equations[J]. BIT . 1994 (2)
  • 3K. J. In ’t Hout.A new interpolation procedure for adapting Runge-Kutta methods to delay differential equations[J]. BIT . 1992 (4)
  • 4K. J. In’t Hout,M. N. Spijker.Stability analysis of numerical methods for delay differential equations[J]. Numerische Mathematik . 1991 (1)
  • 5Kuang Jiaoxun,Tian Honkiiong.The Numerical treatment of Linear Systems with manydelays. Report in AMS meeting #904 . 1995
  • 6K.J. In’t Hout.A new interpolation procedure for adapting Runge-Kutta methods to delay differential equations. Borsa Internazionale del Turismo . 1992
  • 7Kosaku Yosida.Functional analysis. . 1980
  • 8In’t Hout K. J,Spijker M. N.Stability analysis of numerical methods for delay differential equations. Numerical Mathematics . 1991
  • 9Koto T.A stability property of A-stable natural Runge-Kutta methods for systems of delay differential equations. Borsa Internazionale del Turismo . 1994
  • 10Liu M Z,Spijker M N.The stability of the methods in the numerical solution of delay differential equations. IMA Journal of Numerical Analysis . 1990

共引文献6

同被引文献24

  • 1Biao Yang,Lin Qiu,Jiao-xun Kuang(Department of Mathematics, Shanghai Normal University, Shanghai 200234, China.).THE GPL-STABILITY OF RUNGE-KUTTA METHODS FORDELAY DIFFERENTIAL SYSTEMS[J].Journal of Computational Mathematics,2000,18(1):75-82. 被引量:2
  • 2王晚生,李寿佛.非线性中立型延迟微分方程稳定性分析[J].计算数学,2004,26(3):303-314. 被引量:18
  • 3刘建国,甘四清.比例延迟微分方程组Rosenbrock方法的渐近稳定性[J].系统仿真学报,2006,18(12):3365-3368. 被引量:1
  • 4HOUT K J. Stability analysis of Runge-Kutta methods for systems of delay differential equations[J].IMA Numer Anal, 1997, 17: 17-27.
  • 5GREEN K, KRAUSKOPF B. Global bifurcations and bistability at the locking boundaries of a semiconductor laster with phaseconjugate feedback[J]. Physical Review E, 2002, 66(016220): 1-6.
  • 6GREEN K, WAGENKNECHT T. Pseudospeetra and delay differential equations[J]. Journal of Computational and Applied Mathmaties, 2006, 196(2): 567-578.
  • 7JUST W, BENNER H, LOEWENNICH C V. On global properties of time delayed feedback control: weakly nonlinear analysis[J]. Physica D, 2004,199:33-44.
  • 8HAIRER E, NORSETT S P, WANNER G. Solving ordinary differential equations Ⅱ: Stiff and differential-algebraic problems [M]. New York:Springer-Verlag, 1996.
  • 9CONG Y H, CAI J N, KUANG J X. The GPL-stabillity of Rosenbrock methods for delay differential equation[J]. Applied Mathematics and Computation, 2004, 150: 533-542.
  • 10CONG Y H, LU Z W. GPm-Stability of the Rosenbrock method for differential equations with many delays[J]. Journal of Shanghai Teachers University (Natural Sciences), 2005, 34(2):1-4.

引证文献7

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部