期刊文献+

螺旋细杆的均匀扭转振动 被引量:1

HOMOGENEOUS TORSIONALVIBRATION OF A HELICAL THINELASTIC ROD
下载PDF
导出
摘要 讨论螺旋细杆的特殊形式扭转振动,即均匀扭转振动.以非圆截面杆和有原始曲率的圆截面杆为研究对象.杆作均匀扭转振动时各截面有相同的扭角变化规律,且杆中心线的几何形状不受振动过程的影响.研究表明,扭振来源于杆截面的非对称性及杆的原始曲率.杆的扭振规律与单摆运动相似,其动力学方程存在精确解.圆环杆的均匀扭振为螺,旋杆的倾角为零时的特例. The homogeneous torsional vibration as a special case of the vibration of a helical thin elastic rod is discussed in this paper. A rod with noncircular cross section and a rod with circular cross section and intrinsic curvature are under investigation. In the process of ho- mogeneous torsional vibration all cross sections of the rod have a same torsional angle, and the configuration of cen-terline of the rod is not affected by the vibration. It is shown that the torsional vibration is caused by the asymmetry of the cross section and the intrinsic curvature of the rod. The torsional vibration of the rod is analogous to the motion of a simple pendulum, and there exists an exact solution for the dynamical equation. The similar vibration of an annular rod is a special case when the pitch angle of the helix is equal to zero.
作者 刘延柱
出处 《力学与实践》 CSCD 北大核心 2004年第6期14-16,共3页 Mechanics in Engineering
基金 国家自然科学基金项目(10472067)资助.
关键词 曲率 精确解 动力学方程 截面 圆环 螺旋 扭转振动 单摆运动 特例 研究对象 thin elastic rod, helical equilibrium, torsional vibration
  • 相关文献

参考文献4

二级参考文献27

  • 1武际可 黄永刚.弹性曲杆的稳定性问题[J].力学学报,1987,19(5).
  • 2刘延柱.DNA双螺旋结构的螺旋杆力学模型[J].力学学报,2002,:117-121.
  • 3Shi Y, Hearst JE. The Kirchhoff elastic rod, the nonlinear Schroedinger equation, and DNA supercoiling. J Chem Physics, 1994, 101:5186-5200.
  • 4Westcott TP, Tobias I, Olson WK. Elasticity theory and numerical analysis of DNA supercoiling: An application to DNA looping. J Phys Chemistry, 1995, 99:17926-17935.
  • 5Starostin EL. Three-dimensional shapes of looped DNA. Meccanica, 1996, 31:235-271.
  • 6Mesirov JP, Schulten K, Sumners DW. Mathematical Approaches to Biomolecular Structure and Dynamics. New York: Springer, 1996.
  • 7Westcott TP, Tobias I, Olson WK. Modeling self-contact forces in the elastic theory of DNA supercoiling. J Chem Physics, 1997, 107(10): 3967-3980.
  • 8Nizzete M, Goriely A. Towards a classification of Euler-Kirchhoff filaments. J Math Physics, 1999, 40(6):2830-2837.
  • 9Marsden JE. Introducton to Mechanics and Symmetries. New York: Springer, 1994. 287.
  • 10Vielsack P. Spatial bifurcation of a prestressed rod. Trans ASME, J Appl Mech, 1982, 49:443-444.

共引文献33

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部