期刊文献+

基于SPRINT方法的并行决策树分类研究 被引量:18

Study on the parallelism of decision tree classification based on SPRINT
下载PDF
导出
摘要 决策树技术的最大问题之一就是它的计算复杂性和训练数据的规模成正比,导致在大的数据集上构造决策树的计算时间太长。并行构造决策树是解决这个问题的一种有效方法。文中基于同步构造决策树的思想,对SPRINT方法的并行性做了详细分析和研究,并提出了进一步研究的方向。 One of the greatest problems with the decision tree technique is that the computational complexities are normally proportional to the size of training data set, so the computing time of constructing decision tree on large data sets is prohibitive. Parallelism is one effective solution to this problem. In this paper, parallel formulation of SPRINT decision tree algorithm based on synchronous tree construction approach was presented and a proposal of further study was given.
作者 魏红宁
出处 《计算机应用》 CSCD 北大核心 2005年第1期39-41,共3页 journal of Computer Applications
关键词 数据挖掘 SPRINT决策树分类 并行性 data mining SPRINT decision tree classification parallelism
  • 相关文献

参考文献10

  • 1HAN EH, SRIVASTAVA A, KUMAR V. Parallel formulation of inductive classification learning algorithm[ R]. Minneapolis, USA: University of Minnesota, 1996.
  • 2QUINLAN R. C4.5: Programs for Machine Learning[ M]. San Mateo, CA: Morgan Kaufmann, 1993.
  • 3MEHTA M, AGRAWAL R, RISSANEN J. SLIQ: A Fast Scalable Classifier for Data Mining[ A]. Proceedings of EDBT-96[ C]. Berlin, Germany: Springer Verlag, 1996.18 -32.
  • 4SHAFER J, AGRAWAL R, MEHTA M. SPRINT: A Scalable Parallel Classifier for Data Mining[ A]. Proceedings Of the 22nd International Conference on Very Large Databases[ C]. San Mateo, CA:Morgan Kauffman, 1996. 544 - 555.
  • 5SRIVASTAVA A, HAN EH, KUMAR V, et al.. Parallel Formulations of Decision Tree Classification Algorithms[ J]. Data Mining and Knowledge Discovery, 1999, 3(3) : 237 - 261.
  • 6DEWITT D, NAUGHTON J, SCHNEIDER D. Parallel Sorting on a Shared-nothing Architecture using Probabilistic Splitting[ A]. Proceedings First international Conference on Parallel and Distributed Information Systems[C]. New York: IEEE Press, 1992.280-291.
  • 7AGRAWAL R, IMIELINSKI T, SWAMI A. Database Mining: A Performance Perspective[ J]. IEEE Transaction on Knowledge and Data Engineering, 1993, 5(6) : 914 -925.
  • 8MEHTA M, ,AGRAWAL R, RISSANEN J. SLIQ: A Fast Scalable Classifier for Data Mining[ A]. Proceedings of EDBT-96[ C]. Berlin, Germany: Springer Verlag, 1996.18 -32.
  • 9SRIVASTAVA A, HAN EH, KUMAR V, et al.Parallel Formulations of Decision Tree Classification Algorithms[ J]. Data Mining and Knowledge Discovery, 1999, 3(3) : 237 - 261.
  • 10AGRAWAL R, IMIELINSKI T, SWAMI A. Database Mining: APerformance Perspective[J]. IEEE Transaction on Knowledge and Data Engineering, 1993, 5(6) : 914 -925.

同被引文献129

引证文献18

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部