期刊文献+

关联规则中最大频繁项目集的研究 被引量:3

Study for Mining Maximally Frequent Item Sets in Association Rule
下载PDF
导出
摘要 研究了大型事务数据库中关联规则的频繁集问题;提出一种高效挖掘最大频繁集的新算法MMFI。该算法采用按事务数的层次和候选频繁集的维数处理的策略,经数学证明和实验分析,能大大减少判断运算量。 Study the frequent item sets problem for association rule in large business database;propose an efficient new algorithm MMFI in mining maximum frequent item sets.The idea of MMFI is to divide database by level and divide candidate frequent item sets by number.This algorithm is proved that it is efficient to reduce time in compute by mathematics and expri-ments.
出处 《计算机应用研究》 CSCD 北大核心 2005年第1期93-95,98,共4页 Application Research of Computers
关键词 数据挖掘 关联规则 最大频繁集 数据库扫描法 频繁树法 Data Mining Association Rules Maximum Frequent Item Sets Scanning Database Method Frequent Pattern Free Method
  • 相关文献

参考文献18

二级参考文献58

  • 1苏毅娟,严小卫.一种改进的频繁集挖掘方法[J].广西师范大学学报(自然科学版),2001,19(3):22-26. 被引量:10
  • 2Jhan M Kamber著 范明 孟小峰等译.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 3[1]Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In: Proceedings of ACM SIGMOD International Conference on Management of Date, Washington DC, 1993.207~216
  • 4[2]Agrawal R, Srikant R. Fast algorithm for mining association rules. In: Proceedings of the 20th International Conference on VLDB, Santiago, Chile, 1994. 487~499
  • 5[3]Han J, Kamber M. Data Mining: Concepts and Techniques. Beijing: Higher Education Press, 2001
  • 6[5]Agrawal R, Shafer J C. Parallel mining of association rules:Design, implementation, and experience. IBM Research Report RJ 10004,1996
  • 7[6]Savasere A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules. In: Proceedings of the 21th International Conference on VLDB, Zurich, Switzerland, 1995. 432~444
  • 8[7]Hah J, Jian P et al. Mining frequent patterns without candidate generation. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Dallas, TX, 2000.1~12
  • 9[8]Cheung D W, Lee S D, Kao B. A general incremental technique for maintaining discovered association rules. In: Proceedings of databases systems for advanced applications, Melbourne, Australia, 1997. 185~194
  • 10[10]Han J, Jian P. Mining access patterns efficiently from web logs. In: Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'00), Kyoto, Japan,2000. 396~407

共引文献400

同被引文献16

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部