期刊文献+

复弯矩表示的非圆截面杆平衡的Schrdinger方程及其半解析解 被引量:3

Schrdinger Equation of Equilibrium for a Thin Elastic Rod with Non-Circular Cross Section in Terms of Complex Bending Moment and Its Half Analytical Solution
下载PDF
导出
摘要 弹性细杆的平衡和稳定性问题的研究在工程和分子生物学中有重要的应用背景。利用文中提出的复柔度概念,建立了用复弯矩表示的非圆截面杆平衡的Schrdinger方程。借助复曲率概念,导出以杆的曲率、挠率和截面相对Frenet坐标系的扭角为未知变量的2阶常微分方程,此方程与传统使用的Kirchhoff方程等价。文献中仅适用于圆截面杆平衡问题的Schrdinger方程为本文导出方程的特例。对于准对称截面杆,用小参数法分别建立了零次和一次近似方程,其中零次近似方程存在解析解。对于截面的主轴坐标轴与中心线的Frenet坐标轴重合的无扭转杆特殊情形,Schrdinger方程转化为Duffing方程,应用数值方法作出了Duffing杆变形后的三维几何图形。 The study on equilibrium and stability of a thin elastic rod has an important background in engineering and molecular biology. The equilibrium equations of a rod with non circular cross section in the form of Schrdinger equation was established using the complex flexinility and expressed in terms of complex bending moment of the cross section. The Schrdinger equation with curvature, twisting and torsion angle of the cross section as unknown variables can be used instead of the traditional Kirchhoff equation. The published Schrdinger equation suitable only for the rod with circular cross section is a special case of the derived equation. For the case of a quasi symmetrical cross section, zero and one order approximation for the equation were derived by means of the method of small parameter. The zero order approximation is of the same form as in circular cross section and has analytical solution. In a special case of a twistless rod when the principal axes of the cross section are coincident with the Frenet coordinates of the centerline, the Schrdinger equation is transformed to the Duffing equation. Three dimensional geometric shapes of the elastic rod after deformation were given on the basis of the numerical computation.
出处 《力学季刊》 CSCD 北大核心 2004年第4期463-469,共7页 Chinese Quarterly of Mechanics
基金 国家自然科学基金(No.10472067)
关键词 非圆截面弹性细杆 Schrǒdinger方程 DUFFING方程 数值模拟 thin elastic rod of non circular cross section Schrdinger equation Duffing equation numerical simulation
  • 相关文献

参考文献12

二级参考文献37

  • 1武际可 黄永刚.弹性曲杆的稳定性问题[J].力学学报,1987,19(5).
  • 2Shi Y, Hearst JE. The Kirchhoff elastic rod, the nonlinear Schroedinger equation, and DNA supercoiling. J Chem Physics, 1994, 101:5186-5200.
  • 3Westcott TP, Tobias I, Olson WK. Elasticity theory and numerical analysis of DNA supercoiling: An application to DNA looping. J Phys Chemistry, 1995, 99:17926-17935.
  • 4Starostin EL. Three-dimensional shapes of looped DNA. Meccanica, 1996, 31:235-271.
  • 5Mesirov JP, Schulten K, Sumners DW. Mathematical Approaches to Biomolecular Structure and Dynamics. New York: Springer, 1996.
  • 6Westcott TP, Tobias I, Olson WK. Modeling self-contact forces in the elastic theory of DNA supercoiling. J Chem Physics, 1997, 107(10): 3967-3980.
  • 7Nizzete M, Goriely A. Towards a classification of Euler-Kirchhoff filaments. J Math Physics, 1999, 40(6):2830-2837.
  • 8Marsden JE. Introducton to Mechanics and Symmetries. New York: Springer, 1994. 287.
  • 9Vielsack P. Spatial bifurcation of a prestressed rod. Trans ASME, J Appl Mech, 1982, 49:443-444.
  • 10Davis MA, Moon FC. 3-D spatial chaos in the elastica and the spinning top: Kirchhoff analogy. Chaos, 1993, 3(1):93-99.

共引文献58

同被引文献31

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部