期刊文献+

联合小波域和频域的图像去模糊算法 被引量:2

Joint Image Deblurring In Wavelet and Frequency Domain
下载PDF
导出
摘要 提出了一种在小波域和频域上联合恢复模糊图像的算法。首先在小波域上对模糊图像去噪,提出按照贝叶斯公式估计出小波系数的收缩因子,恢复出模糊图像的小波系数值。此后,按照正则化反卷积图像恢复算法,对去噪模糊图像进行恢复。该算法使得反卷积时的正则化算子选取为较小的值,从而恢复的图像既滤除了噪声,同时降低了边缘模糊等振铃效应。实验结果表明,选择拉普拉斯正则化算子,该算法恢复的图像质量优于频域正则化反卷积算法,此外在同等噪声水平下,不同图像的最优正则化参数处在较小的相同动态范围之内,避免了恢复算法中的反复经验试值寻求最优。 A joint image deblurring algorithm in the wavelet and frequency domain is presented. First, the wavelet coefficients of the corrupted image shrink with the coefficients that are estimated by bayes equation. Therefore, we restore the blured image by this denoising method. Then, we deconvolve the denoised image with the reguralization. In the described algorithm, the optimal regularization parameter selects the low value. So, the restored image not only filter the noise, but also has minimal ringing. Experiments show that the quality of restored image with this algorithm by selecting the laplacian operator is superior to that of the regularized deconvolving method in the frequency. Morever, it avoids the optimal regularized parameter selected by experimental trying because the optimal parameter locates in the same narrow bound for different image in one noise level.
出处 《信号处理》 CSCD 2004年第6期594-599,共6页 Journal of Signal Processing
基金 航天支撑基金(021.2JW0514)"十五"总装预研项目(41321090201)
关键词 模糊图像 正则化 小波域 恢复 算法 频域 最优 振铃效应 小波系数 动态范围 <Keyword>image restoration , deblurring, frequency restoration, wavelet transformation
  • 相关文献

参考文献9

  • 1V. Z. Mesarovic, N. P. Galatsanos, and A. K. Katsaggelos,Regularized constrained total least squares image restoration[J].IEEE Trans. Image Processing, 1995, 4(8):1096-1108.
  • 2Wufan Chen, Ming Chen, Jie Zhou. Adaptively regularized constrained total least-squares image restoration[J]. IEEE Trans. Image Processing, 2000,9(4): 588-596.
  • 3Pierre Charnonnier, Laure Blanc-Feraud,etc,Deterministic Edge-Preserving Regularization in Computed Imaging[J].IEEE Trans. Image Processing, 1997,6(2):298-311.
  • 4M. R. Banham and A. K. Katsaggelos, Spatially adaptive wavelet-based multiscale image restoration[J].IEEE Trans.Image Processing, 1996, 5(4):619-633.
  • 5Murat Belge, Misha E. Kilmer, and Eric L. Miller,Wavelet Domain Image Restoration with Adaptive Edge-Preserving Regularization[J]. IEEE Trans. Image Processing, 2000, 9( 4):597-608.
  • 6Tor Berger, Jan Stromberg,etc, Adaptive Regularized Constrained Least Squares Image Restoration[J]. IEEE Trans. Image Processing, 1999, 8(9): 1191-1203.
  • 7章毓晋.图像处理和分析[M].北京:清华大学出版社,1999..
  • 8D. L. Donoho, De-noise via soft-thresholding[J]. IEEE Trans. Information Theory, 1995, 41(3):612-627.
  • 9S. Mallat, A Wavelet Tour of Signal Processing[M]. New York: Academic, 1998.

共引文献344

同被引文献6

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部