期刊文献+

神经网络集成与支持向量机在多值分类问题上的比较研究 被引量:2

Comparison Study on Neural Network Ensemble and Support Vector Machines for Multiple Classification Problems
下载PDF
导出
摘要 神经网络集成和支持向量机都是在机器学习领域很流行的方法。集成方法成功地提高了神经网络的稳健性和精度,其中选择性集成方法通过算法选择差异度大的个体,取得了很好的效果。而支持向量机更是克服了神经网络的局部最优,不稳定等缺点,也在多个方面取得了很好的结果。该文着重研究这两种方法在小样本多类数据集上的性能,在四个真实数据集上的结果表明,支持向量机性能要比神经网络集成稍好. Both of neural network ensemble and support vector machines are popular methods in the machine learning community.The stability and accuracy of neural network can be significantly improved using ensemble techniques,in which the selective ensemble method can obtain excellent results by selecting the component which have more diversity.Support vector machines have performed excellent performance in many fields because of their generalization performance by realizing the principle of margin based structure risk minimization.This article will study on the performance of these approaches on multi-class data set,experiments on four real-world data sets show that support vector machines achieve better results than neural network ensemble does.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第1期46-47,119,共3页 Computer Engineering and Applications
基金 国家自然科学基金资助(编号:50174038)
关键词 神经网络集成 支持向量机 多值分类问题 nerual network ensemble,support vector machines,multiple classification problems
  • 相关文献

参考文献14

  • 1陈念贻,陆文聪.支持向量机算法在化学化工中的应用[J].计算机与应用化学,2002,19(6):673-676. 被引量:41
  • 2刘学军,陈松灿,彭宏京.基于支持向量机的计算机键盘用户身份验真[J].计算机研究与发展,2002,39(9):1082-1086. 被引量:26
  • 3Schapire R E.The strength of weak learnability[J].Machine Learning, 1990;5(2) : 197~227.
  • 4Breiman I..Bagging predictors[J].Machine Learning, 1996;24(2):123--140.
  • 5Zhou Z H,Wu J X,Jiang Y et al.Genetic algorithm based selective neuralnetwork ensemble[C].In : Proceedings of the 17th International Joint Confereneeon Artificial Intelligenee(IJCAI-01),Seattle,WA,2001 ; 2 : 797-802.
  • 6Zhou Z H,Wu J X,Tang W.Ensembling neural networks:many could be better than all[J].Artificial Intelligence, 2002 ; 137 ( 1-2 ) : 239-263.
  • 7Gutta S,Wechsler H:.Face recognition using hybrid classifier systems[C]. In:IEEE International Colfference on Neural Networks,1996:1017-1022.
  • 8Zhou Z H,Jiang Y,Yang Y Bet al.Lung cancer cell identification based on artificial neural network ensembles[J].Artificial Intelligence in Medicine,2002 ;24( 1 ) :25-36.
  • 9Vapnik V.Statistical Learning Theory[M].New York :Wiley, 1998.
  • 10LeCun Y,Jackel L D,Bottou L et al.Comparison of learning algorithms for handwritten digit recognition[C].In:Fogelman-Souliae F, Gallinari P eds.Proceedings ICANN1'95-International Conference on Artificial Neural Networks, 1995 ;2:53~60.

二级参考文献23

共引文献65

同被引文献26

引证文献2

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部