期刊文献+

一种新的机器学习方法——PSVM应用于数控磨床智能诊断的研究 被引量:1

A study of new machine learning method- PSVM and its application in intelligent fault diagnosis for CNC grinding machine
下载PDF
导出
摘要 针对经典SVM对于样本噪声敏感的局限性问题,在经典SVM基础上,引入主成分分析(PCA)方法,提出一种改进SVM新方法-PSVM。这种新的机器学习方法,既利用了PCA降噪的特性,又具有经典SVM泛化能力强、分类快的特性。改善了经典SVM的鲁棒性。应用小波包分析对信号进行预处理,直接得到特征矢量,并作为PSVM的输入,提出满足实时性要求的分类模型WPSVM。通过实例分析,证明这种方法在分类正确率、分类速度以及适用的样本规模等方面都表现出了一定的优越性。 In this paper, SVM based classification to obtain the knowledge of fault diagnosis is introduced. The sensitivity oftypical SVM is analyzed. And in orderto solve this limitations problem, on the basis oftypical SVM,with the introduction of PCA (PrincipalComponents Analysis), a improved machine learning method-PSVM(Primary component analysis Sup- portVector Machine)is proposed in this paper.This new method has both the obvious de-noising ability from PCA and the generalization from SVM. Thus the robusticity ofSVM is improved.The waveletpacket analysis is introduced for translation of the signal into char- acter vector directly. And the translation result is the input of PSVM. Therefore a quick classification modelthat meets the real-time request is proposed.Finally, a detailed experi- ment result proves the veracity , short computational time and good generalization ability for sample setscale.
出处 《制造业自动化》 北大核心 2005年第1期42-46,共5页 Manufacturing Automation
基金 中德政府合作项目支持(20002DFG00027)
关键词 支持向量机 统计学习理论 小波变换 故障诊断 主成分分析 SVM statisticallearning theory fault diagnosis PCA grinding machine
  • 相关文献

参考文献14

  • 1VAPNIKV N. The nature of statistical learning theory[M].NewYork :Springer, 1995.
  • 2VAPNIKV N. Estimation of dependencies based on empiri cal data[M]. Berlin :Springer-Verlag, 1982.
  • 3BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998,2(2): 121-167.
  • 4VAPNIKV N, ZHANG Xue-gong. The nature of statistical learning theory[M].Beijing: Tsinghua University Press, 2000.
  • 5CRISTIANINI N J, SHAWE T. Support vector machines and other kernel-based learning methods[Z]. (Cambridge University Press, 2000.
  • 6FAN Jin-cheng, MEI Chang-lin. Data analysis[M].Beijing, Science Press, 2002.
  • 7SASTRY M. Application of principal component analysis to X-ray photoelectron spectroscopy - the role of noise in the spectra[J]. Journal of Electron Spectroscopy and Related Phenomena, Volume: 83, Issue: 2-3, February 1,1997, 143-150.
  • 8BETrA G, LIGUORI C, PAOLILLO A, et al. A DSP-based FFT analyzer for the fault diagnosis ofrotating machine based on vibration analysis[A]. Proc IEEE Conf on Instrumentation and Measurement Technology,Budabcst[C]. Hungary,2001, 572-577.
  • 9MARCAL R F M, NEGREIROS M, SUSIN A A, et al.Detecting faults in rotating machines[J]. IEEE Instrumentation & Measurement Magazine, 2000,3(4):24-26.
  • 10LAGGAN P A. Vibration monitoring[Z]. Proc IEE Colloquium on Understanding your Condition Monitoring, 1999,1-11.

同被引文献8

  • 1李翠玲,张浩,赵荣泳,樊留群,王骏.粗糙集理论及其在机电行业中的应用潜力分析[J].机电一体化,2005,11(6):24-26. 被引量:3
  • 2Kimball R, Ross M. The data warehouse toolkit: The complete guide to dimensional modeling[M]. 2nd ed. New York, NY, USA: John Wiley & Sons, 2002.
  • 3Vapnik V N. The nature of statistical learning theory[M]. 3rd ed. New York, NY, USA: Springer, 2005.
  • 4Chang C C, Lin C J. LIBSVM - A library for support vector machines[EB/OL]. [2002-12-04]. http://www.csie.ntu. edu.tw/-cj lin/libsvm.
  • 5Giovinazzo W A. Object-oriented datawarehouse design: Building a star schema [M]//Upper Saddle River, NJ, USA: Prentice-Hall, 2000.
  • 6Witten I H, Frank E. Data mining: Practical machine learning tools and techniques[M]. 2rid ed. San Francisco, CA, USA: Morgan Kaufmann, 2006.
  • 7汪永生,邵惠鹤.CIPS中的数据仓库技术[J].化工自动化及仪表,2000,27(1):36-40. 被引量:3
  • 8嵇晓,鲍玉斌,常钊,宋宝燕,于戈.工业数据仓库设计方法及其在质量分析中的应用[J].控制与决策,2001,16(2):229-232. 被引量:5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部