期刊文献+

交互式遗传算法基于NN的个体适应度分阶段估计 被引量:22

Neural network based phase estimation of individual fitness in (interactive) genetic algorithm
下载PDF
导出
摘要 针对交互式遗传算法中人的疲劳问题,提出一种基于神经网络(NN)的个体适应度分阶段估计方法,给出了神经网络估计进化个体适应度与人的评价之间的转换策略以及神经网络学习效果的评价指标,并分析了算法的复杂性.实例结果验证了该方法的有效性. To the problem of human fatigue in interactive genetic algorithm, a neural network based phase estimation of individual fitness is proposed. Turning strategy between neural network estimate based individual fitness and human evaluation based individual fitness is given. The performance index on learning effect of neural network is also presented. The complexity of the algorithm is analyzed. The instance results show its validity.
出处 《控制与决策》 EI CSCD 北大核心 2005年第2期234-236,240,共4页 Control and Decision
基金 国家自然科学基金项目(60304016).
关键词 交互式遗传算法 神经网络 适应度 Convergence of numerical methods Learning algorithms Neural networks
  • 相关文献

参考文献5

  • 1王上飞,王胜惠,王煦法.结合SVM的交互式遗传算法及其应用[J].数据采集与处理,2003,18(4):429-433. 被引量:14
  • 2Takagi H. Interactive evolutionary computation:Fusion of the capabilities of EC optimization and human evaluation[J]. Proc of the IEEE, 2001,89 (9) : 1275-1296.
  • 3Biles J A, Anderson P G, Loggi L W. Neural network fitness functions for a musical IGA[A]. Proc of the Int ICSC Symposium on Intelligent Industrial Automation and Soft Computing[C]. UK, 1996;B39-44.
  • 4Lee Joo-young, Cho Sung-bae. Sparse fitness evaluation for reducing user burden in interactive genetic algorithm [A]. 1999 IEEE Internatil Fuzzy Systems Conference Proceedings [C]. Seoul, 1999, 2:998-1003.
  • 5Sugimoto F, Yoneyama M. An evaluation of hybrid fitness assignment strategy in interactive genetic algorithm[A]. Proc of the 5th Australasia-Japan Joint Workshop on Intelligent and Evolutionary Systems[C].Dunedin, 2001 :62-69.

二级参考文献1

共引文献13

同被引文献170

引证文献22

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部