期刊文献+

分布式数据库约束性关联规则挖掘 被引量:1

Mining Association Rules with Item Constraints in Distributed Database
下载PDF
导出
摘要 针对分布式数据库和约束条件的特点,提出了2种在分布式环境下挖掘约束性关联规则的有效算法,即基于Apriori算法的DMAIC算法和基于频繁模式树的DAMICFP算法。此外,进行了实例验证和测试分析,指出了这2种算法各自的优缺点及适用条件。研究结果表明:DMAIC算法可靠性高,通信协议简单,适用于对通信性能要求不高的分布式数据库;DAMICFP算法执行效率高,通信性能好,适用于对通信性能要求较高的多项目分布式数据库;这2种算法均能有效地解决分布式挖掘约束性关联规则的问题。 According to the characteristics of distributed databases and constraints, two algorithms for distributed mining association rules with item constraints called DMAIC and DAMICFP are developed. The DMAIC algorithm is based on Apriori algorithm and DAMICFP on FP-growth algorithm. The two algorithms are both tested by an illustration and analyzed for their qualities. The advantages, shortcomings and suited conditions of the two algorithms are also given. The results show that DMAIC is an algorithm with high reliability and simple communication protocol, and it suits the system of low communication requirement. DAMICFP is an algorithm with high efficiency and excellent communication quality, and suits the system of high communication requirement. The two algorithms are effective ways to solve the problem of distributed mining association rules with item constraints.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第6期998-1003,共6页 Journal of Central South University:Science and Technology
基金 教育部科学技术研究重点项目([2000]156) 国家杰出青年自然科学基金资助项目(69928201)
关键词 数据挖掘 分布式数据挖掘 约束性关联规则 data mining distributed data mining association rules with item constraints
  • 相关文献

参考文献15

  • 1AGRAWAL R, SHAFER J C. Parallel Mining of Association Rules: Design, Implementation and Experience [J]. IEEE Transactions on Knowledge and Data Engineering, 1996,8 (6):962 - 969.
  • 2AGRAWAL R,SRIKANT R. Fast Algorithms for Mining Association Rules [A]. HECKERMAN D, MANNILA H,PREGIBON D, et al. Proceedings of the 20th International Conference on Very Large Databases [C]. New York: ACM Press, 1994: 487-499.
  • 3CHEUNG D W,NG V T,FU A,et al. Efficient Mining of Association Rules in Distributed Databases [J]. IEEE Transactions on Knowledge and Data Engineering, 1996,8 (6):911 -922.
  • 4HAN J, PEI J, YIN Y. Mining Frequent Patterns Without Candidate Generation [A]. CHEN W D, JEFFREY F, et al.Proceedings of the ACM-SIGMOD Conference on Management of Data [C]. New York: ACM Press,2000:1 - 12.
  • 5PARK J S,CHEN M S,YU P S. An Effective Hash-Based Algorithm for Mining Association Rules [A]. CAREY M J,SCHNEIDER D A, JOSE S, et al. Proceedings of the ACMSIGMOD Conference on Management of Data [C]. New York: ACM Press, 1995:175-186.
  • 6PARK J S,CHEN M S,YU P S. Efficient Parallel Data Mining for Association Rules [A]. FININ T, MAYFIELD J.Fourth Int'l Conference on Information and Knowledge Management [C]. New York: ACM Press, 1995: 31 - 36.
  • 7SAVASERS A,OMIECINSKI E, NAVATHE S. An Efficient Algorithm for Mining Association Rules in Large Databases [A]. DAYAL U, GRAY P M D, NISHIO S. Proc of the VLDB Conference [C]. San Mateo: Morgan Kaufmann Publisher, 1995: 432 - 444.
  • 8SRIKANT R, VU Q, AGRAWAL R. Mining Association Rules With Item Constrains [A]. HECKERMAN D, MANNILA H, PREGIBON D, et al. Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining [C]. Menlo Park: AAAI Press, 1997: 67 - 73.
  • 9HAN J,PEI J. Constrained Frequent Pattern Mining: A Pattern-Growth View [J]. ACM SIGKDD Explorations (Special Issue on Constrained Data Mining), 2002,2(2) :31 - 39.
  • 10崔立新,苑森淼,赵春喜.约束性相联规则发现方法及算法[J].计算机学报,2000,23(2):216-220. 被引量:62

二级参考文献12

  • 1RAgrawa1 TImie1inSki Aswami.Mining association ru1es between sets of items in 1arge database[J].The ACM SIGMOD Intemationa1 Conf on Management of Data, Washington, DC,1993,.
  • 2[1]Agrawal R,Srikant R.Fast Algorithms for Mining Association Rules.In: Proceedings of the 20th Intemational Conference on Very Large Databases,Santiago,Chile,1994:487-499
  • 3[2]Srikant R,Vu Q,Agrawal R.Mining Association Rules with Item Constraints.In: Proceedings of the 3rd International Conference on Knowledge Discovery in Databases and Data Mining ,Newport,Califomia,1997:67-73
  • 4[3]Srikant R,Agrawal R.Mining Generalized Association Rules.In:Proceedings of 21st International Conference on Very Large Databases,Zurich,Switzerland,1995:407-419
  • 5Han J,Proc of the 21st International Confer-ence on Very L arge Databases,1995年,420页
  • 6Lin Dao I,Proc the 6th European Conference on Extending Database Technology,1998年,105页
  • 7Agrawal R,Proc the 11th Inter Conference on Data Engineering,1995年,3页
  • 8周海岩.关联规则的开采与更新[J].软件学报,1999,10(10):1078-1084. 被引量:40
  • 9崔立新,苑森淼,赵春喜.约束性相联规则发现方法及算法[J].计算机学报,2000,23(2):216-220. 被引量:62
  • 10朱绍文,王泉德,黄浩,彭清涛,陆玉昌.关联规则挖掘技术及发展动向[J].计算机工程,2000,26(9):4-6. 被引量:40

共引文献211

同被引文献14

  • 1HAN Jia-wei, Kamber M. Data mining: Concepts and techniques[M]. Beijing: Higher Education Press, 2001: 10-20.
  • 2Doug B, Johannece G, Manuel M. MAFIA: A maximal frequent itemset algorithm for transactional databases[C]//Proceedings of the 17th International Conference on Data Engineering. German: Heidelbergt, 2001: 443-452.
  • 3Bastide Y, Pasquier N, Taouil R. Discovering frequent closed itemsets for association rules[C]//Proceedings, of the 7th International Conferenece on Database Theory. Jerusalem: Springer-Verlag, 1999: 398-416.
  • 4Bing L, Wayne S, Yiming M. Integrating classification and association rule mining[C]//Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining. New York: AAAI Press, 1998: 80-86.
  • 5LI Wen-min, HAN Jia-wei, PEI Jian. CMAR: Accurate and efficient classification based on multiple class association rules[C]//Proceedings of IEEE International Conference on Data Mining. San Jose: CA, 2001: 369-376.
  • 6Thabtah H, Cowling P, Yonghong P. MMAC: A new multi-class, multi-label associative classification approach//Proceedings of IEEE International Conference on Data Mining. Brighton, 2004: 217-224.
  • 7Lim T, Weiyin L. A comparison of prediction accuracy, complexity and training time of thirty-three old and new classification algorithms[J]. Machine Learning, 2000, 40: 203-228.
  • 8Quinlan J. C4.5: Programs for machine learning[M]. San Francisco: Morgan Kaufmann, 1993: 56-89.
  • 9YIN Xiao-xin, HAN Jia-wei. CPAR: Classification based on predictive association rule[C]//SDM 2003. San Francisco: CA, 2003.
  • 10MAO Run-ying, HAN Jia-wei, PIE Jian. CLOSET: An efficient algorithm for mining frequent closed itemsets[C]//Workshop on Data Mining and Knowledge Discovery. Dallas: ACM Press, 2000:21-30.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部