期刊文献+

纳米Sr_2MgSi_2O_7:Eu^(2+),Dy^(3+)的长余辉发光行为 被引量:38

Long Lasting Behavior of Nano-sized Sr_2MgSi_2O_7:Eu^(2+),Dy^(3+) Phosphor
下载PDF
导出
摘要 使用溶胶-凝胶技术合成纳米尺度的Sr2MgSi2O7:Eu2+,Dy3+长余辉发光材料,比较了该方法与固相法获得的长余辉粉体的光致发光行为和长余辉性能.溶胶-凝胶获得的纯相Sr2MgSi2O7:Eu2+,Dy3+长余辉粉体是由纳米尺度的微晶形成的团聚颗粒,具有光致发光行为和长余辉发光特性.其发射峰位于465nm.而固相合成的粉体具有两个发射峰,分别位于404nm和459nm.产生这些差别的原因在于Eu2+在基质晶格中的不同配位情况.固相合成的粉体的余辉发光性能高于溶胶-凝胶粉体,其原因在于高温固相合成在基质内部产生了更高浓度的电子陷阱. Nano-sized Sr2MgSi2O7: Eu2+,Dy3+ phosphor with long lasting behavior was synthesized by a sol-gel method. The chemical reaction process during calcination, and the luminescent property of the obtained phosphor, were investigated in detail. The result indicated that the phosphor obtained by the sol-gel method, which showed photoluminescence and long lasting behavior, was consisted of nano-sized grains about 50nm. The sol-gel-derived phosphor gave out a visible light upon UV illumination peaking at 465nm, while the phosphor obtained by solid reaction showed two emission peaks upon UV irradiation at 404nm and 459nm respectively. The difference in emission spectra can be ascribed to the different coordinators formed within the silicate matrix. The phosphor synthesized by solid reaction exhibited a better afterglow character than the phosphor obtained by the sol-gel method, due to a higher trap concentration which was formed by a higher reaction temperature.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2005年第1期220-224,共5页 Journal of Inorganic Materials
基金 上海市自然科学基金(02ZE14055)上海市纳米科技专项基金(0252nm018)
关键词 硅酸盐 长余辉 发光材料 热释光 silicate luminescent material long lasting thermal stimulated luminescence
  • 引文网络
  • 相关文献

参考文献14

  • 1张中太,张枫,唐子龙,孙红飞.长余辉蓄光陶瓷SrAl_2O_4∶Eu,Dy的性能及发光机理[J].功能材料,1999,30(3):295-296. 被引量:29
  • 2杨云霞 徐志珍 唐泽伸 等.SiO2玻璃涂层的碱土铝酸盐长余辉荧光粉及其制备方法[P].CN1324910A.2001.
  • 3杨海光 陈国顺.长余辉蓄光夜光搪瓷标牌及其制作方法[P].中国专利:CN1276583A.2000.
  • 4安秉哲 李滨武.长余辉发光消防安全指示装置[P].中国专利:CN2468519Y.2002.
  • 5邱勇,孙海涛.一种Eu^ (2+)激活的铝酸锶长余辉结构[J].功能材料,2000,31(6):632-634. 被引量:6
  • 6宋庆梅 黄锦斐 吴茂钧.长余辉磷光材料及其制备[P].中国专利:CN1318601A.1991.
  • 7Lin YH, Tang ZL, Zhang ZT, et al. J. Mater. Sci. Lett., 2001, 20 (16): 1505-1506.
  • 8Lin YH, Tang ZL, Zhang ZT, et al. J. Alloy. Compd., 2003, 348 (1-2): 76-79.
  • 9Bindi L, Bonazzi P, Dusek M, et al. Acta Crystallogr., 2001, B57: 739-746.
  • 10Schaper A K, Schosnig M, Kutoglu A, et al. Acta Crystallogr., 2001, B57: 443-448.

二级参考文献2

共引文献34

同被引文献338

引证文献38

二级引证文献90

;
使用帮助 返回顶部