期刊文献+

一类弱连续映射的拓扑度及其应用

THE TOPOLOGICAL DEGREE THEORY OF SOME WEAKLY CONTINUOUS FUNCTIONS AND ITS APPLICATIONS
下载PDF
导出
摘要 对一类弱连续映射建立了多值拓扑度,获得了可解性,广义可加性,同伦不变性和切除性等基本性质,并得到了奇映射定理和锐角原理.最后还利用所得结果,讨论了非线性算子方程的解的存在性问题、广义固有值问题及拟线性椭圆特征问题.改进了这些方面已有的结果. A topological degree theory is set up for some weakly continuous functions. Some basic characteristics, i. e. the resolvability, the generalized additivity, the homotopy invariance and the excision,etc. are obtained. The odd mapping theorem and the Acute Angle principle are also obtained. Finally,with these results, we discussed the existence problem of solutions of a nonlinear operator equationand the generalized eigenvalue problem and the Dirichlet problem of a quasilinear elliptic equation.
作者 唐春雷
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 1993年第3期257-264,共8页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 弱连续映射 正规 线性空间 拓扑度 weakly continuous mappings normal uniformly normal condition (WA) condi- tion (WB) topological degree
  • 相关文献

参考文献1

二级参考文献5

  • 1马天,数学物理学报,1989年
  • 2马天,Partial Differential Equations,1989年
  • 3马天,应用数学和力学,1988年,9卷,10期,933页
  • 4陈文--,非线性泛函分析,1982年
  • 5匿名著者,二阶椭圆型偏微分方程,1981年

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部