期刊文献+

基于Web使用挖掘的个性化服务技术研究 被引量:7

Research of personalization technologies based on web usage mining
下载PDF
导出
摘要 Internet的快速增长导致了对个性化服务需求急剧增加,Web使用挖掘正成为实现个性化系统功能的思想和方法的有价值的源泉。本文讨论了基于Web使用挖掘的Web个性化技术,并针对个性化系统的功能,介绍了相关数据采集和预处理技术及其在个性化系统中的应用。
出处 《计算机系统应用》 2005年第3期23-26,共4页 Computer Systems & Applications
基金 国家973基础研究项目"WWW上的数据集成 数据仓储及知识发现的有效算法与软件系统"编号:G1998030414)
  • 相关文献

参考文献5

  • 1曾春,邢春晓,周立柱.个性化服务技术综述[J].软件学报,2002,13(10):1952-1961. 被引量:394
  • 2Mobasher B., Cooley R., Srivastava, J. Automatic personalization based on Web usage mining [ J ].Communication of the ACM, 2000,43 (8) : 142 -151.
  • 3Pierrakos D., Paliouras G., Papatheodorou .C. Web usage mining as a tool for personalization: A survey[J]. User, Modeling and User- Adapted Interaction, 2003,13:311 - 372.
  • 4Yew- Kwong Woon, Wee- Keong Ng, Xiang Li.Efficient Web log mining for product development[A]. In Proceedings 2003 International Conferenceon Cyberworlds[C].2003:294 - 301.
  • 5Srivastava J., Cooley R., Deshpande M. Web usage mining: discovery and applications of usagepatterns from web data[ A ]. in Proceedings of the ACM SIGKDD Explorations[C].ACM Press, 2000, 1(2) : 12 -23.

二级参考文献41

  • 1Han, E.H., Boley, D., Gini, M., et al. WebACE: a web agent for document c ategorization and exploration. In: Sycara, K.P., Wooldridge, M., eds. Proceeding s of the 2nd International Conference on Autonomous Agents. New York: ACM Press, 1998. 408~415.
  • 2Schwab, I., Pohl, W., Koychev, I. Learning to recommend from positive evi dence. In: Riecken, D., Benyon, D., Lieberman, H., eds. Proceedings of the Inter national Conference on Intelligent User Interfaces. New York: ACM Press, 2000. 2 41~247.
  • 3Pretschner, A. Ontology based personalized search [MS. Thesis]. Lawrence, KS: University of Kansas, 1999.
  • 4Adomavicius, G., Tuzhilin, A. User profiling in personalization applicati ons through rule discovery and validation. In: Lee, D., Schkolnick, M., Provost, F., et al., eds. Proceedings of the 5th International Conference on Data Mining and Knowledge Discovery. New York: ACM Press, 1999. 377~381.
  • 5Balabanovic, M., Shoham, Y. Fab: content-based, collaborative recommendat ion. Communications of the ACM, 1997,40(3):66~72.
  • 6Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Application of dimension ality reduction in recommender system--a case study. In: Jhingran, A., Mason, J.M., Tygar, D., eds. Proceedings of the ACM WebKDD Workshop on Web Mining for E -Commerce. New York: ACM Press, 2000.
  • 7Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Analysis of recommendati on algorithms for e-commerce. In: Proceedings of the ACM Conference on Electroni c Commerce. New York: ACM Press, 2000. 158~167.
  • 8Breese, J.S., Heckerman, D., Kadie, C. Empirical analysis of predictive a lgorithms for collaborative filtering. In: Cooper, G.F., Moral, S., eds. Proceed ings of the 14th Conference on Uncertainty in Artificial Intelligence. San Franc isco: Morgan Kaufmann Publishers, 1998. 43~52.
  • 9Aggarwal, C.C., Wolf, J.L., Wu, K., et al. Horting hatches an egg: a new raph-theoretic approach to collaborative filtering. In: Chaudhuri, S., Madigan, D., Fayyad, U., eds. Proceedings of the ACM International Conference on Knowledg e Discovery and Data Mining. New York: ACM Press, 1999. 201~212.
  • 10Sarwar, B., Karypis, G., Konstan, J., et al. Item-Based collaborative fil tering recommendation algorithms. In: Shen, V.Y., Saito, N., eds. Proceedings of the 10th International World Wide Web Conference (WWW10). 2001. 285~295.

共引文献393

同被引文献46

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部