期刊文献+

基于高斯混合模型的海面运动目标检测 被引量:7

Ships Detection Based on Gaussian Mixture Model
下载PDF
导出
摘要 提出了一种基于变化检测的高斯混合模型参数估计方法,建立了象素点背景模型并用于海面运动目标的检测。在实验部分,将该方法估计的高斯混合背景模型的参数与基于迭代的EM算法估计的模型参数做比较,模拟实验的结果表明两者估计的参数值相差不大,而在对视频流中的象素点灰度值分布的逼近中,该文的方法比EM算法更接近真实的分布,并且在一定程度上减少了建立背景模型的所需的内存和计算时间。运动目标检测的结果表明,使用该方法建立的背景模型可以比较准确地检测到海面上的运动船只。 This article proposes a parameter estimation method for Gaussian mixture model based on change detection,and uses the method to create background model for each pixel.And then uses the background model to detect the moving ships on the sea surface.The simulated experimental results show that the proposed method has the similar property with EM algorithm.But in the real experiments,the proposed method has better property than the EM algorithm.And the result of moving ships detection is satisfactory.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第5期27-29,152,共4页 Computer Engineering and Applications
基金 国家自然科学基金(编号:60175008)资助项目 国家创新研究群体项目(编号:60024301)
关键词 变化检测 高斯混合模型 高斯混合背景模型 运动目标检测 EM算法 change detection,Gaussian mixture model,Gaussian mixture background model,moving target detection,EM algorithm
  • 引文网络
  • 相关文献

参考文献13

  • 1Zhang TianXu,Zuo ZhengRong,Zuo Zhen. Detection of Sea Surface Small Targets in Infrared Images Based on Multilevel Filter and Minimum Risk Bayes Test[J].International Journal of Pattern Recognition and Artificial Intelligence,2000; 14(7) :907~918
  • 2Sciotti M,Lombardo P.Ship detection in SAR images:a segmentationbased approach[C].In:IEEE Radar Conference,Atlanta,Georgia,2001:81~86
  • 3Lombardo P,Sciotti M.Segmentation-based technique for ship detection in SAR images[J].IEEE Proceedings on Radar,Sonar and Navigation,2001; 148 (3): 147~159
  • 4Wang P,Chong J,Wang H.Ship detection of the airborne SAR images[C].In:IEEE International Geoscience and Remote Sensing Symposium, Honolulu Hawaii,2000:348~350
  • 5Ren Mingwu,Cao Yulong. One Effective Method for Ship Recognition in Ship Locks[J].SPIE Proc,1999;3720
  • 6Cao Yulong,Ren Mingwu. On-line Monitoring for Ships in Lock[J].SPIE Proc, 1998 ;3534
  • 7Grimson W E L,Stauffer C,Romano R et al. Using Adaptive tracking to classify and monitor activities in a site[C].In:CVPR,Santa Barbara,California, 1998: 22~31
  • 8Stauffer C,Grimson W E L. Adaptive background mixture models for real-time tracking[C].In:IEEE Conference on Computer Vision and Pattern Recognition,Ft Collins,CO, 1999:246~252
  • 9Ivanov Y,Stauffer C Bobick,Grimson W E L.Video surveillance of interactions[C].In:Second IEEE Workshop on Visual Surveillance,Fort Collins, Colorado, 1999: 82~90
  • 10Nir Friedman,Stuart Russell. Image segmentation in video sequences:A probabilistic approach[C].In:Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence(UAI),Rhode Island,1997

同被引文献93

引证文献7

二级引证文献30

;
使用帮助 返回顶部