期刊文献+

基于最大似然估计的海面风场反演算法研究 被引量:13

Research on Numerical Wind Vector Retrieval Algorithm Based on Maximum Likelihood Estimation
下载PDF
导出
摘要 最大似然估计法被认为是海面风场反演的最佳方法,目前被用来处理SeaWinds散射计数据。风矢量求解算法是风场反演算法的核心内容。最大似然法的目标函数形式决定了在风场反演过程中必须采用数值方法求解风矢量,而传统数值求解方法运算量大。该文对最大似然估计的风场反演方法的基本原理和具体过程进行探讨,根据其目标函数的一般分布特征,提出一种较为高效的数值风矢量搜索算法。用SeaWinds散射计的L2A实测数据和相应的L2B数据验证了该算法的可行性。 The approach based on Maximum Likelihood Estimation is considered to be the best one to ocean surface wind retrieval and is applied to process the SeaWinds scatterometer data at present.The inversion algorithm of wind vector is the kernel content of the wind retrieval algorithm.The objective function of MLE approach determines that numerical method must be adopted in wind vector retrieval.But traditional numerical method for wind vector inversion needs a large amount of computation.After detailed discussion on the rationale and procedure of the MLE approach,an efficient numerical wind vector search algorithm is presented in this paper,according to the general distribution of objective function.Using some SeaWinds L2A and corresponding L2B data the numerical algorithm is validated.The result indicates that the algorithm is feasible for wind retrieval.
出处 《地理与地理信息科学》 CSSCI CSCD 北大核心 2005年第1期30-33,共4页 Geography and Geo-Information Science
基金 国家科技部"863"计划项目(2002AA134100)
关键词 风场反演 海面风场 反演算法 散射 矢量 数据验证 分布特征 最大似然估计 实测数据 最大似然法 scatterometer Maximum Likelihood Estimation objective function wind retrieval
  • 相关文献

参考文献9

  • 1陈晓翔 解学通.QuikScat卫星SeaWinds散射计海面风场反演方法.高技术通讯,2003,12:45-49.
  • 2JONES W L,SCHROEDER L C,BOGGS D H, et al. The SEASAT -A satellite scatterometer: the geophysical evaluation of remote sensed wind vectors over the ocean[J ]. Journal of Geophysical Research, 1982,87(C5) :3297 - 3317.
  • 3WENTZ F J,PETERHERYCH S,THOMAS L A. A model function for ocean radar cross sections at 14.6 GHz[J]. Journal of Geophysical Research, 1984,89(C3) :3689 -3740.
  • 4NGHIEM S V, LI F K, NEUMANN G. Ku - band ocean backscatter functions for surface wind retrieval [ A]. International Geoscience and Remote Sensing Symposium, 1996,3:27 - 31.
  • 5SCHROEDER L C, BOGGS D H, DOME GJ,et al. The relationship between wind vector and normalized radar cross section used to derive SEASAT- A satellite scatterometer winds [ J ]. Journal of Geophysical Research, 1982,87(C5) :3318 - 3336.
  • 6PIERSON J L. A Monte Carlo comparison of the recovery of winds near upwind and downwind from the SASS- I model function by means of the sum of squares algorithm and a maximum- likelihood estimators [R]. NASA Contractor Reports, 1984. 3839.
  • 7CHI C Y, LI F K. A comparative study of several wind estimation algorithms for spaceborne scatterometers[J ]. IEEE Transactions on Geoscience and Remote Sensing, 1988,26(2) :115 - 121.
  • 8FREILICH M H. SeaWinds Algorithm Theoretical Basis Document [EB/OL]. http://podaac. jpl. nasa. gov/quikscat/qscat- doc,2000.
  • 9HOWARD S. A circlar median filter approach for resolving directional ambiguities in wind fields retrieved from spaceborne scatterometer data [J]. Journal of Geophysical Research, 1990,95(C4): 5291 - 5303.

同被引文献166

引证文献13

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部