期刊文献+

孔结构对铜基甲醇合成催化剂宏观反应速率的影响Ⅰ.未中毒颗粒催化剂 被引量:3

EFFECTS OF PORE STRUCTURES ON GLOBAL REACTION RATES OF METHANOL SYNTHESIS ON Cu-BASED CATALYST(I)UNPOISONED CATALYST PELLET
下载PDF
导出
摘要 催化剂的宏观反应速率受颗粒内扩散过程的影响,而内扩散过程又取决于催化剂颗粒的孔结构。以铜基甲醇合成催化剂为研究体系,通过改变压片压强和共沉淀条件,制备具有不同孔结构参数(比表面、孔隙率、孔径分布、孔容、颗粒密度、曲折因子)的颗粒催化剂,由反应工程中的扩散-反应方程,按照平行交联孔模型计算有效扩散系数,模拟计算单颗粒催化剂在工业生产条件下的宏观反应速率,从而研究孔结构对未中毒铜基甲醇合成催化剂宏观反应速率的影响。 The pore structures of catalysts influence intraparticle diffusion which mainlydetermines the global reaction rate;Taking the Cu-based mathanol synthesis catalyst as theresearch object,catalysts with different pore structure parameters(specific surface area,porosity,pore volume,pore radius distribution,particle density and tortuosity factor)wereprepared by changing the catalyst’s pelleting pressure and coprecipitation condition. Diffu-sionreaction equations and parallel path cross-linked pore models were applied to model sin-gle pellet catalyst’s behavior and the global rection rate of methanol synthesis under commer-cial process conditions;The effects of pore structures on the global reaction rates were stud-ied for unpoisoned Cu- based methanol synthesis catalyst pellets.The following results wereobtained:(1)As the pelleting pressure increases,the global reaction rate on the catalyst pel-let decreases at first,and then increases,there is a minimum global reaction rate.(2)Thereis an optimum range of catalyst、orosity which corresponds to the maximum global reactionrate. (3)The effects of the parameters of the pore structure of the catalyst will interact,andthe total effect on the global reaction rates is the combination of the effect of each parameter.
机构地区 华东理工大学
出处 《燃料化学学报》 CSCD 北大核心 1994年第2期183-188,共6页 Journal of Fuel Chemistry and Technology
基金 高等学校博士学科点科研基金
关键词 铜基 甲醇 孔结构 金属催化剂 Cu-based catalyst methanol pore structure parameter global reaction rate
  • 引文网络
  • 相关文献

参考文献3

  • 1刘国际,博士学位论文,1992年
  • 2宋维端,化工学报,1988年,39卷,4期,401页
  • 3吕待清,化肥与催化,1982年,7卷,2期,27页

同被引文献28

  • 1赫格达斯L L 彭少逸等(译).催化剂设计--进展与展望[M].北京:烃加工出版社,1989.1-10,216-232.
  • 2李建伟.列管式甲醇合成反应器及其所用催化剂的综合优化[M].北京:北京化工大学,1998..
  • 3CI Zhi-min(慈志敏).Study on Cu-based catalysts for methanol synthesis from CO hydrogenation(一氧化碳加氢合成甲醇用铜基催化剂的研究)[D].Chengdu(成都):Sichuan University(四川大学),2006.
  • 4Waugh K C.Methanol synthesis[J].Catal Lett,2012,142(10):1153-1166.
  • 5Graaf G H,Scholtens H,Stamhuis E J,et al.Intra-particle diffusion limitations in low-pressure methanol synthesis[J].Chem Eng Sci,1990.45(4):773-784.
  • 6Szeifert F,Arva P,Nagy D.Effects of pore diffusion on the synthesis of methanol[J].Chem Eng Comm,1989,76(1):157-167.
  • 7TANG Qian-lin,HONG Qi-jun,LIU Zhi-pan.CO2 fixation into methanol at Cu/Zr O2 interface from first principles kinetic Monte Carlo[J].J Catal,2009,263(1):114-122.
  • 8Edward M C.Kinetic model for alcohol synthesis over a promoted Cu/Zn O/Cr2O3 catalyst[J].Ind Eng Chem Res,1992,31(3):792-803.
  • 9Grabow L C,Mavrikakis M.Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation[J].ACS Catal,2011,1(4):365-384.
  • 10Youngs T G A,Haq S,Bowker M.Formic acid adsorption and oxidation on Cu(110)[J].Sur Sci,2008,602(10):1775-1782.

引证文献3

二级引证文献11

;
使用帮助 返回顶部