摘要
本文提出一种新的求解含源项,非定常、非线性对流扩散方程的数值方法。首先,将方程在网格域内线性化,再利用变换将对流扩散方程转化为扩散方程,结合具有四阶精度的三次样条公式,最终将方程离散为二层三节点的无条件稳定差分格式,其推导过程简便,精度为时间二阶,空间四阶。
A new method is presented in this paper for solving unsteady nonlinear convection-diffusion equation with the source term. First, the equation i linearized in the small domain discreted then, a functional transformation is introduced and the convecnon-diffusion equation is trans fered to the diffusion equation. By utilizing the 3-spline difference formula of the four order accuracy, we finally obtain a non-condition stabe difference scheme which has high accuracy of two order in i wae and four order in space.
出处
《水动力学研究与进展(A辑)》
CSCD
北大核心
1994年第5期599-602,共4页
Chinese Journal of Hydrodynamics
关键词
非线性
非定常
对流扩散方程
样条差分
水力学
nonlinear
unsteady
convection-diffusion equation. 3-spline difference