期刊文献+

添加物对石蜡相变螺旋盘管蓄热器蓄热和放热性能的影响 被引量:25

Effect of additive on thermal energy stored and discharged performance of wax phase change thermal storage with spiral pipe
下载PDF
导出
摘要 对以石蜡为相变材料的螺旋盘管蓄热器的蓄热和放热性能进行了实验研究 ,探讨了在石蜡中添加铜粉、硅粉和不锈钢丝带对石蜡螺旋盘管蓄热器蓄热和放热性能的影响。结果表明 :在蓄热过程中 ,随着加热时间的增加 ,蓄热器内的温度分布不均匀性逐渐增大 ;纯石蜡蓄热器内温度分布不均匀性最为严重 ;插入不锈钢丝带的蓄热器内温度分布最均匀。在放热过程中 ,纯石蜡蓄热器的出口水温下降最快 ;而石蜡加不锈钢丝带的蓄热器出口水温最高。 The thermal energy storing and discharging performances of wax phase change thermal storage with spiral pipe were studied experimentally in this paper. For increasing the effective thermal conductivity of wax, the copper powder, silicon powder, and stainless steel ribbon were used as additive in wax respectively. The effect of the additives on the thermal energy storing and discharging performance of thermal storage were discussed. The experimental results show that during thermal energy storage, the temperature profile in thermal storage becomes more uneven when heat was inputted continuously. During thermal energy storage and discharging, the thermal storage with wax and stainless steel ribbon has the most uniform temperature profile; followed with wax and silicon powder, wax and copper powder, and wax. The water temperature at the outlet of spiral pipe of thermal storage with wax drops most rapidly in these thermal storages with various additives. For a specific thermal energy discharging time, the thermal storage with stainless steel ribbon has the highest water temperature at the outlet of spiral pipe in the process of thermal energy discharging, the second is the one with wax and silicon powder, and the third is the one with wax and copper powder.
出处 《热科学与技术》 CAS CSCD 2005年第1期14-19,共6页 Journal of Thermal Science and Technology
关键词 蓄热器 螺旋盘管 温度分布 放热过程 热性能 相变材料 插入 石蜡 添加物 硅粉 wax phase change thermal storage spiral pipe additive thermal energy stored and discharged performance
  • 相关文献

参考文献9

  • 1葛新石,龚堡,陆维德,等. 太阳能工程--原理及应用[M]. 北京:科学出版社,1988.
  • 2SAITO A, HONG H, HIROKANE O. Heat transfer enhancement in the direct contact melting process [J]. Int J Heat Mass Transfer, 1992, 35(2): 295-305.
  • 3VELRAJ R, SEENIRAJ R V, HAFNER B, et al. Heat transfer enhancement in a latent heat storage system [J]. Solar Energy, 1999, 65(3): 171-180.
  • 4FUKAI J, KANOU M, KODAMA Y, et al. Thermal conductivity enhancement of energy storage media using carbon fibers [J]. Energy Conversion and Management, 2000, 41(14): 1543-1556.
  • 5CHOW L C, ZHONG J K, BEAM J E. Thermal conductivity enhancement for phase change storage media [J]. Int Commu in Heat and Mass Transfer, 1996, 23(1): 91-100.
  • 6WATANABE T, KIKUCHI H, KANZAWA A. Enhancement of charging and discharging rates in a latent heat storage system by use of PCM with different melting temperatures [J]. Heat Recovery Systems CHP, 1993, 13(1): 57-66.
  • 7GONG Z X, MUJUMDAR A S. An enhancement of energy charge-discharge rates in composite slabs of different phase change materials [J]. Int J Heat Mass Transfer, 1996,39(4): 725-733.
  • 8WANG J F, CHEN G, ZHENG F. Study on phase change temperature distributions of composite PCMs in thermal energy storage [J]. Int J of Energy Res, 1999, 23(4): 277-285.
  • 9张寅平,Stein.,D.非接触式汽液固系统储换热性能的实验研究[J].太阳能学报,1998,19(4):352-359. 被引量:4

二级参考文献1

  • 1张寅平,相变贮能.理论和应用,1996年,289页

共引文献3

同被引文献268

引证文献25

二级引证文献224

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部