期刊文献+

Adomian分解法与Runge-Kutta方法之比较 被引量:2

Comparison Between Adomian Decomposition Method and Runge-Kutta Method
下载PDF
导出
摘要 利用数值实验,对Adomian分解法和经典Runge-Kutta方法进行比较.实验结果表明,用Adomian分解法求解微分方程具有误差小、精度高的优点. In this paper,we present the Adomian decomposition method.The comparision between the decomposition method and the classical Runge-Kutta Method.Some numerical experiments have been done.The experimental results demonstrate that the Adomian decomposition method is better than Runge-Kutta method in the application of finding solutions of differential equations.
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 2005年第1期15-18,共4页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(19861003)
关键词 ADOMIAN分解法 RUNGE-KUTTA方法 微分方程 数值实验 求解 误差 实验结果 Adomian decomposition method classical Runge-Kutta method inverse operator differential equation
  • 引文网络
  • 相关文献

参考文献7

二级参考文献5

共引文献52

同被引文献18

  • 1梁祖峰,唐晓艳.用Adomian分解法求解分数阻尼梁的解析解[J].应用数学和力学,2007,28(2):200-208. 被引量:10
  • 2EL-SAYED A M A, EL-KALLA I L, ZIADA E A A. Analytical and numerical solutions of multi-term nonlinear fraction orders differential equa- tions[J]. Applied Numerical Mathematics,2010,60(8) :788 -797.
  • 3EL-KALLA I L. Error estimate of the series solution to a class of nonlinear fraction differential equation [ J ]. Commun Nonlinear Sci Numer Simu- lat,2011, 16 (3): 1408-1413.
  • 4ADOMIAN G. Nonlinear stochastic operator equations[ M ]. San Diego:Academic Press, 1986.
  • 5EI-TAWIL M, SALEH M. Decomposition solution of stochastic nonlinear oscillator[J]. Int J Differ Equ Appl, 2002, 6(4) : 411 -422.
  • 6DELVES L M, MOHAMED J L. Computational methods for integral equations[ M]. Cambridge:Cambridge University Press, 1985.
  • 7SCHIAVANE P, CONSTANDA C, MIODUCHOWSKI A. Integral methods in science and engineering[ M]. Boston: Birkhser, 2002.
  • 8HOLMAKER K. Global asymptotic stability for a stationary solution of a system of integro-differential equations describing the formation of liver zones[J]. SIAM J Math Anal, 1993,24 ( 1 ) : 116 - 128.
  • 9BABOLIAN E, MALEKNEJAD K. A numerical method for solving Fredholm-Volterra integral equations in two-dimensional spaces using block pulse functions and an operational matrix[ J ]. Journal of Computational and Applied Mathematics,2011, 235 (14) : 3965 -3971.
  • 10BABOLIAN E, MALEKNEJAD K. Two-dimensional triangular functions and their applications to nonlinear 2D Volterra-Fredholm integral equa- tions [ J 1. Comouters and Mathematics with Applications .2010. 60 ( 6 ) : 1711 - 1722.

引证文献2

二级引证文献2

;
使用帮助 返回顶部