期刊文献+

燃烧理论中的非线性奇摄动系统

The Nonlinear Singularly Perturbed System for Theory of Combustion
原文传递
导出
摘要 探讨了在没有预先混合的燃烧理论中 ,非线性奇摄动系统εx″i=hi(t,x) fi(t,x,x′)的 Dirchlet问题和 Robin问题 ,其中 x=(x1,x2 ,… ,xn) T.在适当的条件下 ,证明了解的存在性 ,并给出了解的渐近估计 . In this paper, a nonlinear singularly perturbed system εx″-i=h-i(t,x)f-i(t,x,x′) of Dirichlet problem and Robin problem for the theory of combustion are considered, where x=(x-1,x-2,:,x-n)+T. Under the appropriate assumption, we prove that there exists a solution x(t,ε) and the estimation of x(t,ε) are obtained using the method of differential inequalities.
作者 韩祥临
出处 《数学的实践与认识》 CSCD 北大核心 2005年第2期159-163,共5页 Mathematics in Practice and Theory
基金 国家自然科学基金项目资助 (1 0 471 0 3 9) 浙江省自然科学项目资助 (1 0 2 0 0 9)
关键词 燃烧理论 非线性系统 奇摄动 渐近性态 微分不等式. theory of combustion nonlinear system singular perturbation asymptotic behavior
  • 相关文献

参考文献8

  • 1Melenk J M, Schwab C. Analytic regularity for a singularly perturbed problem[J]. SIAM J Appl Math, 1999,30(2): 379-400.
  • 2Struckmerer J, Unterreiter A. On a recursive apporoximation of singularly perturbed parabolic equations[J]. JMath Anal Appl, 2000, 250(1): 245-265.
  • 3Glizer V Y, Fridman E. H control of linear singularly perturbed system with small state delay[J]. J Math Anal Appl, 2000, 250(1): 49-85.
  • 4Butuzov V F, Nefedov N N, Schneider K R. Singularly perturbed elliptic problems in the case of exchange of stabilities[J]. J Differential Eqnations, 2001, 169: 373-395.
  • 5Kelley W G. A singular perturbation problem of Carrier and Pearson[J]. J Math, Anal Appl, 2001, 255: 678-697.
  • 6Hah Xianglin. The shock solution for a class of nonlinear equation[J]. Acta Scientiarum Naturalium Universitatis Sungatseni, 2002, 41: 9-11.
  • 7Han Xianglin. The asymptotic estimate for a class of quasilinear singularly perturbed problems[J]. Acta Math Appl Sinica, 2003, 26: 359-366.
  • 8Chang K W, Hower F A. Nonlinear Singular Perturbation Phenomena: Theory and App-lication[M]. New York:Springer-Verlay, 1984.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部