期刊文献+

用Lattice Boltzmann方法计算流体对曲线边界的作用力 被引量:12

Evaluation of Fluid Acting Force on the Curve Boundary in the Lattice Boltzmann Method
下载PDF
导出
摘要 通过分析格子Boltzmann方法中边界受力的计算方法,研究了两种用LB方法计算边界受力的方法———动量转换法和应力积分法,其中动量转换法较为可靠、准确,且易于执行.应用LB方法模拟了圆柱绕流问题,并计算出圆柱的阻力系数.通过模拟凹坑表面的层流流动,发现随着Re数的增大,凹坑表面的阻力系数逐渐接近平板的阻力系数. Two approaches, the momentum-exchange method and the stress-integration method, for force evaluation based on the Lattice Boltzmann equation were investigated. The momentum-exchange method is relatively reliable, accurate, and easy to implement for both two-dimensional and three-dimensional flows. The flow around a cylinder was simulated, and the drag coefficient of the cylinder was evaluated by the momentum-exchange method. The drag coefficient of a concave surface was also evaluated and compared with the theoretical drag coefficient of a plane. The numerical results are valid, and the drag coefficient of the concave surface is close to that of the plan with the increase of Re number.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2005年第2期132-136,共5页 Journal of Jilin University:Science Edition
基金 国家重大基础研究前期研究专项基金(批准号:2002CCA01200) 吉林大学创新基金和教育部留学回国人员科研启动基金(批准号:2002247).
关键词 LATTICE BOLTZMANN方法 动量转换法 应力积分法 阻力系数 Lattice Boltzmann method momentum-exchange method stress-integration method drag coefficient
  • 相关文献

参考文献9

  • 1施卫平,胡守信,阎广武.计算可压缩流体流动的LB多速度模型[J].吉林大学自然科学学报,1996(2):7-12. 被引量:8
  • 2Filippova O, Hanel D. Grid Refinement for Lattice-BGK Models [J]. J Comput Phys, 1998, 147: 219-228.
  • 3Ladd A J C. Numerical Simulations of Particulates Suspensions via a Discredited Bohzmann Equation [ J ]. J Fluid Mech, 1994, 271: 311-339.
  • 4MEI Ren-wei, YU Da-zhi, Shyy Wei, et al. Froce Evaluation in the Lattice Boltzmann Method Involving Curved Geometry [J]. Phys Rev E, 2002, 65: 041203-041214.
  • 5Ginzburg I, d' Humières D. Local Boundary Methods for Lattice Boltzmann Models [ J ]. J Stat Phys, 1996, 84 (5/6) :927 -971.
  • 6祖迎庆,施卫平.计算溃坝波问题的离散速度模型[J].吉林大学学报(理学版),2005,43(1):24-28. 被引量:3
  • 7Lou L S. Analytic Solutions of Linearized Lattice Bohzmann Equation for Simple Flows [ J]. J Star Phys, 1996, 88(3/4) :913-926.
  • 8MEI Ren-wei, Shyy Wei, LUO Li-shi. An Accurate Curved Boundary Treatment in the Lattice Boltzmann Method [ J ].J Comput Phys, 1999, 155 : 307-330.
  • 9吴望一.流体力学[M].北京:北京大学出版社,1993..

二级参考文献11

  • 1Nadiga B T. An Euler Solver Based on Locally Adaptive Discrete Velocity [ J ]. J Statistical Phys, 1995, 81 (1/2): 126-149.
  • 2Nadiga B T. An Adaptive Discrete-Velocity Model for the Shallow Water Equations [ J ]. J Comput Phys, 1995, 121: 271-280.
  • 3WANG Ji-wen, LIU Ru-xun. The Composite Finite Volume Method on Unstructured Meshes for the Two-Dimensional Shallow Water Equations [J]. Int J Numer Meth Fluids, 2001,37: 933-949.
  • 4Fennema R J, Chaudhry M H. Explicit Methods for 2D Transient Free-Surface Flows [ J ]. J Hydraul Eng, ASCE,1990, 116: 1013-1034.
  • 5Liu F,J Comput Phys,1994年,110卷,112页
  • 6阎广武,博士学位论文,1994年
  • 7Qian Y H,Europhys Lett,1992年,17卷,479页
  • 8Chen H,Phys Rev A,1992年,45卷,5339页
  • 9施卫平,耿爱芳,黄明游,胡守信.以Maxwell-Boltzmann分布函数为基础的流矢量分裂方法[J].计算物理,2002,19(1):17-22. 被引量:4
  • 10施卫平,耿爱芳,张中新.用离散速度方法计算浅水长波方程[J].计算力学学报,2002,19(4):393-397. 被引量:3

共引文献10

同被引文献130

引证文献12

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部